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Abstract

Knowledge-based proof planning is a new paradigm in automated theorem proving (ATP) which
swings the motivational pendulum back to its AI origins in that it employs and further develops many
AI principles and techniques such as hierarchical planning, knowledge representation in frames and
control-rules, constraint solving, tactical and meta-level reasoning. It differs from traditional search-
based techniques in ATP not least with respect to its level of abstraction: the proof of a theorem
is planned at an abstract level and an outline of the proof is found. This outline, i.e., the abstract
proof plan, can be recursively expanded and it will thus construct a proof within a logical calculus.
The plan operators represent mathematical techniques familiar to a working mathematician. While
the knowledge of a domain is specific to the mathematical field, the representational techniques
and reasoning procedures are general-purpose. The general-purpose planner makes use of this
mathematical domain knowledge and of the guidance provided by declaratively represented control-
rules which correspond to mathematical intuition about how to prove a theorem in a particular
situation. These rules provide a basis for meta-level reasoning and goal-directed behaviour. We
demonstrate our approach for the mathematical domain of limit theorems, which was proposed as a
challenge to automated theorem proving by the late Woody Bledsoe. Using the proof planner of the
�MEGA system we were able to solve all the well known challenge theorems including those that
cannot be solved by any of the existing traditional systems. 1999 Elsevier Science B.V. All rights
reserved.

Keywords:Theorem proving; Planning; Automated proof planning; Meta-level reasoning; Integrating constraint
solvers

∗ Corresponding author. Email: melis@cs.uni-sb.de.
1 Email: siekmann@dfki.de.

0004-3702/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00076-4



66 E. Melis, J. Siekmann / Artificial Intelligence 115 (1999) 65–105

Automated theorem proving. . . is not the beautiful process
we know as mathematics. This is ‘cover your eyes with
blinders and hunt through a cornfield for a diamond-shaped
grain of corn’. Mathematicians have given us a great deal
of direction over the last two or three millennia. Let us pay
attention to it.

Woody Bledsoe, 1986

1. Introduction

Since the early days of artificial intelligence (AI) research, two schools have existed in
automated theorem proving, the logic-oriented approaches and the rather psychologically
oriented approaches which try to simulate people. For example, at the Dartmouth
Conference in 1956, two systems found wide attention and are considered ‘classic’ today:
Martin Davis’ decision procedure based on Presburger’s Arithmetic [30] which is the grand
ancestor of logic-oriented systems and the now seminal Logic Theorist [97] that pioneered
the second category. In 1954, Davis’ system was the first system ever to prove a theorem
with a computer (“The sum of two even numbers is even”.) and about a year later, Alan
Newell and Herb Simon finished their joint system, later called the Logic Theorist, which
succeeded in proving many theorems fromPrincipia Mathematica[106] and sparked off
the field of artificial intelligence.

Since Hao Wang’s work [121] and with the development of the resolution principle in
1965 [104], the logic-oriented, search-based paradigm has by and large dominated the field,
and by far the strongest systems were built within this train of thought.

Other ideas were, however, never fully absent. Woody Bledsoe, among others [5,
19,103], advocated automated theorem proving based on mathematical knowledge and
practice [13]. Bledsoe’s beautiful quotation above shows his scepticism for purely search-
based theorem proving, and in fact he never believed that it would succeed in proving
difficult theorems even in mathematically well-understood domains. He developed a vision
of the concepts and procedures necessary for automated theorem proving since he thought
of himself as “one of the researchers working on resolution type systems who ‘made the
switch’. . . and became convinced that we were on the wrong track” [12].

Traditional automated theorem proving is based on general-purpose machine-oriented
logical calculi such as the resolution calculus [104], the tableaux- [114], or the matrix
methods [3,11]. The inference rules of such a calculus span the search space and more
than thirty years of research led to a battery of refinements and strategies to traverse
these large (billions of nodes) spaces. In spite of many attempts to the contrary (e.g., the
hyperresolution rule), the inference steps defined by these calculi are rather small and low-
level when compared with the proof steps of a trained mathematician.

Traditional systems such as the MKRP system [33], OTTER [80], SETHEO [72], or
SPASS [119] are essentially black boxes; after the input of a theorem and of (hopefully)
exactly those axioms necessary for the proof of the theorem and after setting the
appropriate parameters, the system searches blindly for a sequence of logic rules that
proves the theorem from the axioms. The search is supported by some general-purpose



E. Melis, J. Siekmann / Artificial Intelligence 115 (1999) 65–105 67

control, called strategies or refinements [75], that is purely syntactic in nature and hardly
reflects mathematical ways of discovering a proof.

Now this approach, although far from any mathematical practice and often under attack
from the more AI-oriented community [45,46], is not entirely unreasonable as, e.g., the
chess program Deep Blue has demonstrated which also derives its strength from search
techniques. Recent success with blind SAT-techniques seems to corroborate even more
the advantages of blind but fast and simple mechanisms over domain-dependent AI-
techniques.

Just like automated chess and other areas, traditional ATP systems benefit from the
technological development of faster computers with larger storage—they can now store and
search billions of clauses and indeed, they do.2 Due to this improvement and to various
technical advances in representational techniques (see for indexing [42]), systems have
gained considerable strength and they can prove nontrivial open mathematical problems,
such as the Robbins Algebra Conjecture [79], whose proofs are often unintuitive and
therefore tricky for humans. In general, however, most proofs of genuinely mathematical
problems even in well-understood domains are very much beyond the capabilities of any
of today’s systems. So, after forty years of research the time is ripe again to ask Woody
Bledsoe’s question: are we on the wrong track?

It appears that this situation is not unique just for automated theorem proving.

Over time we become trapped in our shared vision of appropriate ways to tackle
problems, and even more trapped by our funding sources where we must constantly
justify ourselves by making incremental progress. Sometimes it is worthwhile
stepping back and taking an entirely new (or perhaps very old) look at some problems
and to think about solving them in new ways. This takes courage as we may be
leading ourselves into different sorts of solutions that will for many years have poorer
performance than existing solutions. With years of perseverance we may be able to
overcome initial problems with the new approaches and eventually leapfrog to better
performance. Or we may turn out to be totally wrong. That is where the courage
comes in. (Rodney Brooks, AAAI-96)

1.1. The psychology of mathematical invention

Why can a mathematician cope with long and complex proofs and what are her strategies
for avoiding less promising proof paths?

Given the current state of knowledge about our human formal reasoning capacity, we
do not know the answer. However, at least the following three observations are generally

2 The first theorem prover implemented by the second author in the mid seventies was not untypical for its
generation; it could search spaces of several 100,000 clauses, to generate proofs of the length of a dozen steps.
Our MKRP system that was under development for almost fifteen years could search spaces of several million
clauses by the end of the eighties to find proofs of about a hundred steps. Todays systems, such as SPASS and
OTTER search spaces well in the billions: “Clauses generated: about 3,000,000,000. At the end of the search,
about 400,000 clauses were in use. This took 314 hours and used 433 Megabyte of RAM. I guess, for a successful
search the search space would be 1/4 as big”. Bill McCune on OTTER’s figures for large search spaces for an
open problem in combinatory logic. Personal communication.
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accepted: first, a mathematician’s reasoning is more often than not based on some vivid
and concrete representation of the problem at hand [43,118]. Secondly, difficult theorems
are not shown from scratch but usually with some known proof technique such as proof
by induction, the pigeon hole principle, proof by diagonalization, and so on. In fact, a
good mathematician has at least several dozen (but presumably less than a thousand)
proof techniques for her particular field at her disposal. Also, there surely are thousands
(but probably less than a million) minor tricks of the trade such as when and how to
apply a homomorphism, when to differentiate, or how to reformulate a given problem.
In hindsight it seems preposterous to assume that all of this can be achieved just by blind
search. For very difficult and open mathematical problems—usually they are open exactly
because none of the standard attacks yields a solution—there is the need to combine
and reshuffle these standard techniques and so, thirdly and finally, there is empirical
evidence [66,101] which suggests that mathematiciansplan a proof at various levels
of abstraction in the proof discovery process. The following quotation taken from an
interview with the German mathematician Faltings, who proved Mordell’s Conjecture,
beautifully illustrates the case in point.3 When asked how he proved the famous problem
he said [34]

Man hat Erfahrungen, dass bestimmte Schlüsse unter bestimmten Voraussetzungen
funktionieren. . .Man überlegt sich also im Groben: Wenn ich das habe, könnte ich
das zeigen und das nächste. Hinterher muss man die Details einfügen und sieht, ob
man es auch wirklich so machen kann.

To translate freely into English, “We know from experience that certain inferences are usu-
ally successful under certain prerequisites. So first we ponder about any reasonable way
how to proceed. In other words, we roughly plan; if we would have a certain result the next
result may follow and then the next, etc. Afterwards we have to fill in the details, and to
check whether the plan really works.”

Proof plans seem to have a cognitive reality of their own and in the following two
sections we like to mention two areas of research that also benefit from the new way of
seeing things, i.e., from the fact that there is a well defined concrete representational level
above the level of a logical calculus.

1.2. Proofs by analogy

Theorem proving by analogy is a small subarea of ATP which has been plagued by a
notorious problem, namely that we often find two proofs analogous although it is hard to
establish a one to one mapping from the syntactic representation of the source proof to the
target—and hence, the techniques based upon such mappings often fail (see, e.g., [81]). In
particular, theproof ideamay be the same while the details of source and target proof may

3 In the early 1980s Gerd Faltings solved Mordell’s Conjecture which says “Algebraic curves of order 2 or more
have finitely many rational points”. Mordell’s Conjecture has been considered a hard mathematical problem and
it took over 60 years to solve it. Last but not least it derives its significance from being a close relative of Fermat’s
famous conjecture. Faltings received the field medal for this work.
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differ considerably. For instance, not every detail of the proof of LIM+ (the limit of sum
of two functions equals the sum of their limits) can be transferred to a proof of LIM* (the
limit of the product of two functions equals the product of their limits) although, surely, the
theorems are very similar and a mapping between them can be established. Furthermore,
applying the same inference rule in the source and target situations does not necessarily
lead to subgoals that match, e.g., even if the multiplication function is identically mapped,
the procedure decomposing a natural number into a product of primes may lead to different
numbers of factors in source and target.

So, how do we fix the right level of abstraction, if it is not the calculus level? Proof
plans are more abstract than the calculus-level proofs and often capture the “essential
idea” of a proof explicitly. In [82] we have shown how this new representation leads to
a much improved analogical transfer usingderivational analogyas introduced by Jaime
Carbonell [24]. Analogy-driven proof plan construction [82] was first implemented for
proofs by mathematical induction [93] and later also used to solve an open challenge
problem of Woody Bledsoe in [84].

1.3. Proof presentation

The output of a successful run of a traditional system is notoriously unreadable let alone
intuitively understandable in the way mathematicians communicate. Take, for instance, the
following theorem.

Theorem. LetK be an ordered field. Ifa ∈K, then1< a implies0< a−1< 1 (and vice
versa).

The proof generated by the prover OTTER, looks as follows.

1 [] x=x.
2 [] -(x<y)| -(0<z)|x*z<y*z.
3 [] -(x<y)| -(y<z)|x<z.
4 [] -(x<y)| -(y<x).
5 [] x=0| -(0<x)|0<inv(x).
7 [factor,4,1,2] -(x<x).
8 [] -(0<inv(a))| -(inv(a)<1).
9 [] 0<1.
10 [] x=0|x*inv(x)=1.
12,11 [] 1*x=x.
13 [] 1<a.
19 [hyper,3,9,13] 0<a.
27 [para_into,19.1.2,5.1.1,unit_del,7,19] 0<inv(a).
48,47 [para_from,10.1.1,19.1.2,unit_del,7] a*inv(a)=1.
60 [hyper,2,13,27,demod,12,48] inv(a)<1.
65 [hyper,8,27,60] F.

While the textbook proof taken from [76] reads.
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Proof. Let 1< a. According to Lemma 1.10 we havea−1> 0. Thereforea−1= 1a−1<

aa−1= 1. 2
This huge discrepancy is more than the annoying technical problem of translating a

machine found proof into natural language (see [55]). Obviously the human readable form
of the above proof is at a very different level of abstraction and gives an “outline”, where the
details and possibly a translation into a calculus-level proof could in principle be provided
by an experienced mathematician.

In addition, for more difficult proofs, a proof in mathematics is both, a means to
understand and communicate why some result holds and secondly a means to achieve
precision [77]. Alan Robinson coined the formula [104]

Proof=Guarantee+Explanation.

As to a ‘guarantee’, we have the proof in the logical calculus that could be checked by
a proof checking program, however, it is a logician’s folly to assume that this is also an
explanation. The logical proof provides a ‘justification’, rather than an ’explanation’. Alan
Robinson [105] suggests that the proof-as-explanation aspect is both (far) more important
and (far) more interesting than the mere logical guarantee.

For a comprehensiblecommunication, an explanation at a moreabstract level is
required. Such an explanation can, however, not be generated directly from a calculus-
level proof. We shall argue that the presentation of a textbook proof is based not on the
calculus-level expansion but, depending on the intended reader, on a proof plan at one of
the possible levels of abstraction.

1.4. An alternative: Proof planning

Proof planning was originally conceived as a mere extension of tactical theorem proving
(see LCF [41], NuPrl [28], or Isabelle [99] for tactical theorem proving). Tactical theorem
proving is based on the notion of atactic which encapsulates repeatedly occurring
sequences of inference steps into macro-steps. These tactics are realized by programs,
i.e., executing a tactic yields a sequence of calculus-level proof steps and thus relieves
the user from applying too many single inference rules in a row in interactive theorem
proving.

The idea of proof planning is as follows. The representation of a proof, at least while
it is developed, consists of a sequence of complex operators, such as the application
of a homomorphism, the expansion of a definition, the application of a lemma, some
simplification, or the differentiation of a function. Each of these operators, calledmethods,
can in principle be expanded into a sequence of inference steps, say, of a natural deduction
(ND) calculus by a tactic. Now if an individual tactic of this kind, is augmented by pre- and
postconditions, we canplansuch a sequence of tactics. This marriage of planning operators
with tactics was Alan Bundy’s key idea [20] for proof planning.

More recently, another type of methods with schematic expansions, has been de-
fined [54]. Hence, methods are not necessarily restricted to its tactical origins but can be
defined more generally as proof planning operators [91], i.e., any building blocks for proof
plans, that can be recursively expanded into a calculus-level proof.
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Proof planning searches for a plan, i.e., for a sequence of methods, where the
preconditions of a method match a postcondition of a predecessor in that sequence.
This well-known view of a plan [35] leads naturally to a new engine for automated
theorem proving; a planner can be used toplana sequence of methods that transforms the
proof assumptions into the theorem. Standard heuristics and techniques from the planning
literature can now be employed.

Moreover, proof planning provides means ofglobal search controlthat correspond well
to mathematical intuition, as opposed to the local and syntactic search heuristics which are
commonly used for search control in traditional automated theorem proving [75].

The first proof planner,CLAM[21], was designed to prove theorems by mathe-
matical induction.CLAM employs the rippling search heuristic for difference reduc-
tion [22,56]. Rippling is based on an annotated logic calculus that handles anno-
tated terms and uses annotated matching. More specifically, a skeleton annotation in-
dicates the commonalities between the induction hypothesis and the induction conclu-
sion (the ‘skeleton’) and a context annotation indicates the difference between the in-
duction hypothesis and the induction conclusion (the ‘context’), and rippling is es-
sentially a context-reducing rewriting that preserves the skeleton, i.e., the common-
alities. Such a difference reduction works in particular for equational proofs and
proofs by mathematical induction. However, there are many theorems that are dif-
ficult or impossible to prove byCLAM (for instance, the limit theorem LIM*) be-
cause

(i) for many problems, the means of control are insufficient and not flexible enough,
(ii) no domain-specific methods are used, and
(iii) the need to construct mathematical objects with certain theory-specific properties

is not supported.
To extend proof planning, this article introducesknowledge-based proof planning. First

it shows which knowledge is available in mathematics and how it can be represented.
Section three describes how a general-purpose proof planner makes use of mathematical
domain knowledge including methods, control-rules, and external reasoners. Several
techniques that restrict the search in proof planning are introduced, in particularmeta-level
reasoningin Section 3.2 andconstraint solvingin Section 3.3.3. In Section 4 we show
how we proved limit theorems using the knowledge-based proof planner of the�MEGA

system [10] and thereby show that knowledge-based proof planning is not only possible in
principle but can be used to solve problems that cannot be solved by other general-purpose
systems. Finally, Section 5 argues that proof plans provide a representational abstraction
of a proof that is also well-suited for the communication with a user.
�MEGA is a complex theorem proving system for interactive and automated proof

development whose distributed architecture integrates various (mathematical) services,
such as the proof planner, traditional automated theorem provers, the knowledge base,
computer algebra systems, a proof verbalization component, and a graphical user interface.
In the following, we shall restrict our presentation of�MEGA to those aspects that
are directly relevant for knowledge-based proof planning, the�MEGA system itself is
documented inter alia in [10,110,111].
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2. Principles of proof planning

We shall now briefly review the basic notions from the field of planning in AI and
subsequently introduce proof planning within this terminology. Our extensions that led to
knowledge-based proof planning are then presented in Section 3. We useσ for substitutions
and abbreviate the result of applyingσ to F by Fσ .

2.1. Basics of planning

A planning problem consists of aninitial statedescribing some initial situation and of
goals to be achieved. A planning domain is defined byoperatorsthat usually represent
actions. The operators have specifications to be used in the planning process. In STRIPS
notation [35] these specifications are called preconditions and effects. Preconditions
specify the conditions of the planning state that have to be satisfied for the operator
to be applicable, whereas effects describe the potential changes of the planning state
caused by an operator application. In STRIPS representation, effects are represented
by add-lists (⊕) and delete-lists (	), i.e., lists of literals that are added or deleted by
an operator application. Note that preconditions and effects are usually formulated as
expressions in a restricted first-order logicalobject-levellanguage such as(on A B)
or (arm-holds X) . However, some planners, e.g., Prodigy [96], allow for additional
preconditions formulated in ameta-levellanguage which restrict the instantiation of
parameters. They are called application conditions in the following.

A partial plan is a partially ordered set of steps, i.e., of (partially) instantiated operators,
with additional instantiation constraints and auxiliary constraints [62]. A partial plan can be
seen as an implicit representation of a set of sequences (set of potential solutions) consistent
with the ordering, instantiation, and auxiliary constraints. A solution of a planning problem,
a complete plan, is a fully instantiated linearization of a partial plan that transforms the
initial state into a goal state, i.e., a state in which the goals hold.

The operation of a planner repeatedly refines a partial plan, i.e., it adds steps and
constraints and thus restricts its set of potential solutions until a solution can be picked
from its set of potential solutions [61]. Table 1 shows a simplified backward planning
algorithm (not handling goal interactions). Planning starts with a partial planπ0 defined
by the problem to be solved, whereπ0 consists of stepst0 andt∞ that are instantiations of
the dummy operatorsstart andfinish . They have the initial state as⊕-effects and the
goals as preconditions, respectively.π0 also represents the order constraintt0 ≺ t∞. The
introduction of a step into a partial plan removes an open goalg from the goal agendaG
and may introduce new open subgoals and constraints. This refinement is continued until
no open goals are left and a solution is found or until no operator is applicable anymore.

Search is involved in each of the planning algorithms, and hence, the process of planning
consists of a sequence of choices that leads to a complete plan. These decisions include to
choose which open goal to solve next, which planning operator to use in order to attain this
goal, and which instantiations to choose. These decisions influence the way the search
space is traversed or restricted. Some planners use explicit declarative control-rules to
guide the search.
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Table 1
Outline for backward planning

Backwards-Refine-Plan (π ,G)

Termination : if goal agendaG empty,then Solution .
if no operator applicable,then Fail .

Goal Selection: Choose open goalg ∈G.
Operator Selection:
• For each operatorM

for each⊕-effecte of M
let σ be the matchereσ = g

if application-conditions(Mσ) = true,
thenM is applicable.

• Choose one applicableM (backtracking point)
− insertM into π
− insert constraints intoπ
− updateG.

Recursion: Call Backwards-Refine-Plan on the refined partial planπ .

A diversity of planning approaches has been developed, among them two kinds of
hierarchical planning techniques,precondition abstraction[107] andoperator abstraction
planning [116], also called hierarchical task network (HTN) planning. Precondition
abstraction first searches in an abstract space by ignoring certain preconditions of
operators. These ignored goals are considered later at a lower hierarchical level of planning
only. Operator abstraction employs complex (as opposed to primitive) operators that
represent complex actions. A complex operator can beexpandedto a partial (sub)plan
according to a schema. Since only primitive actions can be executed, all complex operators
have to be expanded in order to obtain an executable plan.

After this brief review of classical AI planning we shall now describe how this transfers
to proof planning. Search problems in proof planning and extensions of proof planning to
cope with the large search space are addressed afterwards in Section 3.

2.2. Proof planning

Proof planning considers a proof problem as a planning problem and hence it is
an application of planning techniques to mathematics. This domain exhibits seriously
complex problems and potentially infinitely branching search spaces. However, the
notorious problem of goal interaction is typically not present in this domain. The particular
planning algorithm we are actually using is not really important for a general article as this
(in �MEGA we experiment with two different algorithms) hence we just refer to a simple
proof planner for backward and forward planning, extended by hierarchical planning.

The initial state in proof planning is a collection of sequents,4 the proof assumptions,
and the goal is the sequent to be proven. A proof planning domain consists ofmethods,
of control-rules, andtheory-specific reasoners. A partial proof planis a partially ordered

4 A sequent is an object (∆ ` F ) with a set of formulae∆ and a formulaF which means thatF is derived from
∆.
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Induction

Base-case

Symbolic evaluation

Simplification

Tautology checking

Step-case

Rewriting

Fertilization

Fig. 1. Proof pattern for mathematical induction, where fertilization is the application of the induction hypothesis.

set of instantiated methods and acomplete, i.e., fully expanded proof plan is a sequence
of instantiated primitive methods that transfers the initial state into a goal state. Thus a
complete plan is a solution of a problem, in other words, a proof of the theorem.

The beauty of this approach is that methods represent familiar mathematical proof
techniques or frequently occurring mathematical formula manipulations. In particular,
methods should capture

(1) common patterns in proofs, that is, a commonstructure such as in proofs by
mathematical induction (see Fig. 1) or

(2) common proofproceduressuch as term simplifications or, for example, the
application of the Hauptsatz of Number Theory (each natural number can be
uniquely represented as the product of prime numbers).

Examples for methods that encode a common proof structure areDiagonaliza-
tion [25], Induction [21], and the theory-specificComplexEstimate [85] which
is an estimation method used for planning limit theorems as presented in Section 4. Meth-
ods that encode common procedures, i.e., methods that have some control encoded, are
among othersComputeIntegral , Optimise [110], orSimplifyTerm .

The intuitive mathematical counterpart of methods is reflected in good textbooks. For
instance, the first chapter of the textbookElements of the Theory of Computation[73],
by Lewis and Papadimitriou introduces the common proof techniques of Mathematical
Induction, the Pigeonhole Principle, and the Diagonalization Principle as the main tools to
be used throughout the book. The textbookComputability, Complexity, and Languages[31]
describes the following common pattern in diagonalization proofs (see Fig. 2).
• A certain setE is enumerated in a suitable fashion.
• It is possible, with the help of the enumeration, to define an objectd that is different

from every object in the enumeration.
• The definition ofd is such thatd must belong toE, contradicting the assertion that

we began with an enumeration ofall the elements inE.
From this description, a planning method for diagonalization proofs was used to prove well
known and mathematically difficult theorems by diagonalization [25].
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Find enumeration ofE

Define objectd

d different from everye in E

andd in E

Derive contradiction

Fig. 2. Proof pattern of diagonalization proofs.

Let us now make these general ideas more concrete. The initial state in proof planning
is a collection of proof assumptions formalized by logical sequents of an object-level
language5 and the goal is the sequent to be proven. For instance, for proving the theorem
LIM+ the goal is

∅ ` lim
x→a f (x)+ g(x)= L1+L2 (1)

and the initial state consists of the proof assumptions

∅ ` lim
x→a f (x)= L1,

∅ ` lim
x→a g(x)= L2

and of axioms and definitions of the theoryR of real numbers.
Proof planning now starts with the partial planπ0 defined by the proof assumptions and

the theorem to be proven and searches for a solution of the problem, i.e., a sequence of
instantiated methods that transforms the initial state into a goal state.�MEGA’s planner
searches by backward planning from the goalandby goal-oriented forward planning from
the assumptions.
�MEGA uses both hierarchical planning techniques, operator abstraction and precondi-

tion abstraction as introduced above. As a generalization of operator abstraction planning,
complex methods can be expandedrecursivelyinto primitive methods that represent infer-
ence steps at the calculus level of a natural deduction calculus. Each of these expansions
is stored in the hierarchically organized proof plan data structure (PDS) [10] as shown in
Fig. 3. A PDS is used to represent the various levels of proof abstraction; the initial PDS
consists of the initial partial planπ0 and asπ0 is refined by planning, more nodes are intro-
duced into the PDS. The expansion of nodes takes a method and expands it into a subplan
at the next lower level of abstraction.

In the figure, three abstraction levels are depicted. The left hand side of Fig. 3 sketches
the correspondence between calculus-level rules that are composed into schemata or
combined by tactics as specified by methods. The expansion of high-level methods into
lower-level plans until finally the level of the ND-calculus is reached, is indicated on the
right hand side. A fully expanded plan, i.e., an ND-proof, can be checked for correctness
by a proof checker at the end of the planning process. This is necessary because not every

5�MEGA’s object-level language, POST, is based on Church’s simply typedλ-calculus [26].



76 E. Melis, J. Siekmann / Artificial Intelligence 115 (1999) 65–105

Fig. 3. Proof plan data structure with expansions.

instantiated method is guaranteed to be correct in the sense that it yields a correct proof of
the conclusion from the premises.

Depending on whether a method encodes a particular proofstructureor a proofproce-
dure, the expansion of a non-primitive method is realized schematically or procedurally.
A schematic expansion defines a proof tree that may contain meta-variables.6

3. Knowledge-based proof planning

Mathematicians have accumulated mathematical problem solving knowledge over
hundreds of years and a mathematician is an expert in a highly specialized mathematical
field rather than a universal expert. That is, domain-specific knowledge is a key for success
while, of course, some general techniques and mathematical knowledge are important too.

In this section, we shall see which knowledge is available, how it can be represented,
how it can be used, and how the architecture of a system makes this knowledge accessible
for proof planning.

3.1. Methods

Woody Bledsoe remarks in [14] that central in mathematical knowledge are “. . .

methods, procedures, and tricks of the trade, which have been used successfully by the
great mathematicians over the years, also diagrams, constructions, figures, and examples”.
They play a key role in proof discovery. Accordingly, the design of methods which capture
these techniques is essential also for a successful proof planning.

6 Meta-variables are place holders for syntactic objects of the underlying logical calculus, i.e., for first-order
formulae.
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Now there exist theory-dependent and theory-independent methods; for instance,
decomposition tricks to be used for estimations inε-δ-proofs or the computation of
integrals can be considered theory-specific (for the real numbers) and also proof by
induction or the abstract consistency property presuppose some minimal mathematical
structure and content. On the other hand, a case-split is theory-independent and therefore
corresponds to primitive theory-independentmethods usually captured in natural deduction
calculi [39,102].

How can we discover methods?One heuristic for knowledge acquisition not only from
mathematical (text)books is the following: The importance of a method is more often
than not indicated bynamingit. Named mathematical methods are, for instance, a proof
by diagonalization or by induction, the application of an important theorem such as the
Hauptsatz of Linear Algebra (eachn-dimensional vector space has a basis ofn linearly
independent vectors), the Hauptsatz of Number Theory, etc. The mathematical monograph
Introduction to Real Analysis[7] introduces mathematical methods by referring, for
example, to the Supremum Property, to the Monotone Convergence Theorem, etc. It states
as a didactic help or hint for the reader: “The next two results will be used later as methods
of proof” (p. 32), “We shall make frequent and essential use of this property (the Supremum
Property ofR)” (p. 45), or “the method we introduce in this section (associated with the
Monotone Convergence Theorem). . . applies to sequences that are monotone. . .” (p. 88).

How can methods be represented?Methods consist of declarative specifications to be
used in the planning process and of an expansion function that realizes an expansion
of the method into a partial proof plan. We distinguish object-level and meta-level
specifications. The object-level specifications correspond to the usual preconditions and
effects in planning. That is, they specify the sequents that match open goals to be satisfied
by the method (backward planning), the sequents that have to be in the planning state
when the method is applied (i.e., the subgoals produced by the method during backward
planning), the sequents that match with assumptions in the planning state, and those that
are produced as new assumptions when the method is used in forward planning.

The meta-level specifications capture in a meta-language thelocal conditions of the
method’s application, i.e., properties and relations that must hold for the sequents to be
processed by the method.7 The meta-level specification of a method expresseslegal
conditions for the method’s application, in particular, restrictions of the instantiation of
the method’s parameters.

In �MEGA methods are represented as frame-like data structures with slots, slot names,
and fillers. The slot names arepremises, conclusions, application conditions, andproof
schema. Thepremisesandconclusionsconstitute a logical specification, in the sense that
the conclusions are supposed to follow logically from the premises. Their (⊕)- and (	)-
annotations indicate object-level specifications, with the semantics that a	-conclusion is
deleted as an open goal, a⊕-premise is added as a new open goal, a	-premise is deleted
as an assumption, and a⊕-conclusion is added as an assumption when the methods are
inserted into the partial plan. These specifications are matched with the current goals and
assumptions respectively and then the output of the method’s application is computed from
the instantiated specifications.

7 For example,subform(G,A) expresses the fact thatG is a subformula of A.
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Table 2

Method: PeanoInduction

premises ⊕L1,⊕L2

conclusions 	L3

appl.cond sort(n) = Nat

proof schema L1. ` P (0) (baseCase)

L2. ` P (k)→ P (k+ 1) (stepCase)

L3. ` ∀n.P (n) (IndAxiom;

L1,L2)

For example, the methodPeanoInduction (Table 2) has the object-level specifica-
tion ⊕L1, ⊕L2, and	L3, where L1 is an abbreviation for the sequent in proof line L1
in theproof schema. The annotations mean, the sequent in L3 is deleted as a goal and the
sequents in L1 and L2 are added as new subgoals.

This representation of preconditions and effects is somewhat more involved than the
usual object-level preconditions and effects because we have forward planning (planning
new assumptions from existing ones) as well as backward planning (reducing a goal to
subgoals) and, therefore, assumptions and open goals are both included into the planning
state; the potential changes of the goalsandthe assumptions have to be represented.

The application conditions(appl.cond) are formulated in a meta-language using
decidable meta-predicates. They specifylocal and legal conditions for the method’s
application. For instance, in the abovePeanoInduction , the application conditions
require thatn is a natural number.

The slotproof schemaprovides the information for the schematic expansion of the
method and thereby captures the semantics of this method, i.e., the schematic expansion
introduces a partial plan into the PDS that is defined by thisproof schema. The justifications
for each line, the right most entries of the proof lines, can be tactics, methods (including
ND-rules), a call to an external reasoning system, or OPEN. For instance, in the line

L1. ` P(0) (baseCase)

of PeanoInduction (Table 2) the line-justification is the tacticbaseCase that is
supposed to proveP for the number 0. A line like

L2. ∆ ` |k|6M (OPEN)

(from theComplexEstimate method of Table 6) means that line L with the sequent
∆ ` |k|6M open, i.e., there is currently no justification for∆ entails|k|6M . The line

L6. ∅ ` b= k ∗ aσ + l (CAS;L5)

(from the ComplexEstimate method of Table 6) means that the computer algebra
system CAS is expected to justify the formulab = k ∗ aσ + l in line L6 with the help
of the formula in line L5. Similarly an automated theorem prover or a decision procedure
could be specified here.
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3.2. Meta-level reasoning

Although most methods encapsulate a chunk of calculus-level proofs, and therefore,
proof plans are generally much shorter than the corresponding expansions into a calculus-
level proof, the potential search spaces are still prohibitively large. The reason is that a
large number of alternative methods is usually applicable at each choice point and also,
more seriously, the search space for mathematical proofs is potentially infinite. That is to
say, even for a finite number of operators, there may be infinitely many branches at each
choice point, for example, when existentially quantified variables have to be instantiated or
when a lemma has to be introduced.8 Hence, special techniques for reducing and guiding
the search are needed in proof planning.

Informed searchis superior in domains, where control knowledge exists and mathemat-
ics is surely a field where such knowledge has been accumulated. The good news is that,
since methods represent mathematically meaningful steps, control knowledge can express
mathematical ‘intuition’ rather than just syntactical information such as an order or a num-
ber restriction on literals as in traditional ATP. The bad news is that it can be difficult to
extract this knowledge and to represent it appropriately.

Our representation of control knowledge depends on the kind of the knowledge, in
particular on whether it expresses legal or heuristic, local or global knowledge. As opposed
to ‘local’ knowledge as defined above, ‘global’ means that its evaluation procedure may
have to inspect the whole PDS and its history (i.e., the failed proof attempts etc.) as well
as time resources, the user model, and other global settings such as the theory within
which the problem is stated and the typical examples of this theory. While legal and local
knowledge is appropriately encoded into theapplication conditionsof methods, heuristic
knowledge should be encoded into control-rules. They can then be used for meta-level
reasoning which is known to be extremely important in mathematics [108].

We prefer an explicit and modular representation of heuristic control knowledge in
declarative control-rules rather than the previous representation hardwired into the planner
or the methods. This is useful because the same method can be used in different theory
contexts with different control. Consider, e.g., a method that translates a goal into a
statement about natural numbers, i.e., into a goal that can then be shown by Peano
Induction. The function that determines the natural number is a parameter of a very general
‘translation’ method. In many completeness proofs for logic calculi this natural number
is either the excess literal number [1], the length of clauses, or the number of literal
occurrences. In other theories the choice of this number may be different, e.g., the length
of a derivation, the complexity of a formula, the number of grammar rule applications etc.
Now, the method that finds this natural number is very general and applicable in many
mathematical domains, whereas the control knowledge that determines the possible range
of the parameter (the function) is specific and thus usually different in different domains.

8 This is a problem well known, e.g., in induction and verification. The ultimate reason for infinite branching is
that the cut rule, i.e., the rule

Γ,B `A Γ ` B
Γ `A

that is applied backward, cannot generally be avoided in mathematics. For an analysis see [67].
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Other well known reasons for using control-rules are: Modularly implemented and
declaratively represented control-rules ease themodification and extensionof the control
knowledge. For instance, when new control information is required for new cases of
problem solving, the existing control-rules can be modified or new control-rules can be
introduced easily, as opposed to a re-implementation of the procedurally implemented
control component of a planner. In particular, when the control is changed orgeneralized
or when new methods are introduced into the domain, no re-implementation of the affected
methods is necessary. Moreover, the declarative representation of control information by
rules can be a basis forautomatically learningcontrol-rules, as realized in some planning
systems, e.g., in [17,70,95].

In �MEGA, a control unit evaluates the control-rules and guides the proof planner in its
choice between several candidates, similar to an expert system, where the list of candidates
rules is reduced to a smaller list. Control-rules have an antecedent and a consequent. The
antecedent specifies the overall context within which this control-rule is applicable; its
evaluation determines whether the control-rule is rejected or not. Currently, the consequent
of a rule encodes the advice toselecta specified subset of the available candidates, to
reject, or to prefer one candidate over another candidate. The first two types of rules
prune the search space, while prefer-rules change the default order without excluding other
alternatives.

Corresponding to the type of the choices of the planner we have the following classes of
control-rules in�MEGA:
• method-choice for choosing among several methods, this may come with binding

choices,
• sequent-choice for choosing among goals (in backward planning) or among

assumptions (in forward planning),
• strategy-choice for choosing a refinement strategy (not discussed in this article,

but see [88]).
The rules are formulated in an expressive meta-language. The decidable meta-predicates

in the antecedents of control-rules inspect the PDS and the planning state (e.g.,goal-
matches ), the planning history (e.g.,last-method ), the constraint state (e.g.,
unique-value ), the available resources, the user model, the theory in which to plan,
including typical models of the theory(e.g.,invalid-in-typical ). For example, the
following rule case-analysis-intro which is a reconstruction of a critic inCLAM
expresses the heuristic that if the methodRewrite whose parameter is instantiated by a
rule (C -> R) is not applicable because the formulaC is not trivially provable, then a
CaseSplit method should be introduced into the plan.

(control-rule case-analysis-intro
(kind method-choice)
(IF (last-method (Rewrite (?C -> ?R))) AND

(failure-condition (trivial ?C)))
(THEN (select (CaseSplit (?C or not ?C)))))

For instance, ifRewrite (φ) was tried in the last planning step with the instantiation of

φ ≡ x 6= a→ f (x)− f (a)
x − a = f ′(a)
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Table 3
Outline for controlled backward planning

Backwards-Refine-PlanC (π ,G)

Termination : if goal agendaG empty,then Solution .
if no operator applicable,then Fail .

Goal Selection: Evaluating control-rules (for goals) returnsG′ with G′ ⊆G.
Choose open goalg ∈G′.

Operator Selection:
• Evaluating control-rules (for operators) returnsO ′ ⊆O.
• For each operatorop∈O ′

for each⊕-effecte of op
let σ be the matchereσ = g

if application-conditions(opσ)= true,
then op is applicable.

• Choose one applicableM (backtracking point)
− insertM into π
− insert constraints intoπ
− updateG.

Recursion: Call Backwards-Refine-PlanC on the refined partial planπ .

but this failed becausex 6= a does not hold, then aCaseSplit on (x 6= a ∨ x = a) is
chosen next in order to enableRewrite (Φ) in one of the case-split branches.

The use of control-rules gives rise to an extended planning algorithm as shown in Table 3
(see Table 1 for comparison).

3.3. Integrating external reasoning systems

In many mathematical proofs, logical steps are naturally combined with some form
of specialized reasoning or effective computation such as computing integrals, solving
equations, or solving inequalities (see [23] for an overview). This specialized reasoning
does not work too well with traditional ATP systems whereas theory-specific systems and
algorithms can perform such services more efficiently because they represent objects such
as rational and real numbers [50] by specialized data types that can be efficiently handled
and because they rely on efficient special-purpose algorithms called background reasoning
in [23].

Proof planning provides a natural framework for integrating such external reasoning
systems as follows. Suppose we have an algorithm for the computation of the greatest
common divisor, GCD, whose computation implicitly uses axioms and theorems for
integers. This computation can be first included into the proof plan by wrapping the call of
the GCD-algorithm into a method whose tactic computes the output of the method. In case
this computation cannot be trusted,9 or in either case we prefer a sequence of calculus-
level steps for the proof anyway, the computation has to be expanded into a proof that
is a subproof of the overall calculus-level proof. Therefore, in�MEGA this expansion is

9 For example, a computation may not check whether the divisor is zero.
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possible in principle. However, generating a proof plan from a system’s trace is expensive
and hence the plan generation mode is called on demand only.

In the following, we shall briefly mention the external reasoning systems integrated into
�MEGA and then concentrate just on those aspects that are relevant for this article.

3.3.1. Traditional automated theorem provers and decision procedures
The first systems that were integrated into�MEGA are the MKRP system [33] and

OTTER [80]. Currently, more provers are integrated, e.g., SPASS [119], PROTEIN [8],
Bliksem [98], EQP [78], and Waldmeister [47]. The ultimate goal of this integration is
this: once we have an abstract proof plan there may be many gaps in the overall proof that
could easily be solved by a call of one of these ATP systems. The nontrivial aspects of
this integration is to spot the right gaps and secondly to translate the resulting proof into a
sequence of ND-rules which is the chosen base calculus of�MEGA. The second problem is
solved in�MEGA [53] and other systems [2,74,94,100] while the first problem is currently
circumvented by interactively calling the ATPs.

3.3.2. Computer algebra systems
In order to execute symbolic computations more efficiently,�MEGA integrates several

computer algebra systems includingµCAS [63], an experimental CAS, to simplify
algebraic expressions and to compute terms in the proof planning process.

The call of a computer algebra system is wrapped into a method or in a function that is
invoked when evaluating a method’sapplication conditions. The computer algebra system
returns a simplified expression or a newly computed term. A node in the proof plan that is
justified byCAScan be expanded recursively into an ND-proof that can be proof checked.
For this expansion,µCAS runs in a plan-generation mode which returns the protocol
information from which a proof plan justifying its computation can be re-constructed. This
plan can then be recursively expanded into an ND-proof (see [63]).

3.3.3. Constraint solvers
Many proofs require the construction of an object with theory-specific properties. This

is usually indicated by an existentially quantified variable in the problem. In traditional
theorem proving this construction is carried out by the unification algorithm.

Our solution to this problem is to delay this instantiation as much as possible and to
integrate an external constraint solver that incrementally restricts the possible object values,
essentially as in constraint logic programming (CLP) [58]. This process is essential for the
purpose of this paper and, as we shall see, the use of constraint solvers differs from that of
a CAS or an ATP as it requires the permanent presence during the planning process and
the collection and propagation of many constraints by the constraint solver (see [92]).

Our external constraint solver uses the notation and functionalities common to CLP.
These are outlined next followed by a description of a generic interface with proof
planning. The common theory of CLP [59] defines a constraint domain (D,L) for a given
signatureΣ that includes the symbol = .D is aΣ-structure, i.e., an interpretation forΣ
which interprets = as the identity, andL is a class of first-orderΣ-formulae (constraints)
that is closed under variable renaming, conjunction, and existential quantification. For
instance, theΣ-structureR is the constraint domain of arithmetic over the real numbers
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for Σ = (0,1,+,∗,=,<,6), where+,∗ are interpreted as the usual addition and
multiplication function and<,6 are interpreted as the less-than and less-than-or-equal
relations on reals, respectively.

Basic constraintsare those for which satisfiability can be decided directly, e.g.,(X < a).
Non-basic constraintshave only incomplete decisions, e.g.,X + Y = Z when only one
variable is known.Conditional constraintshave the form (ifc thenA1 elseA2), for a
constraintc [113].

Jaffar and Maher [59] introduce an operational semantics for CLP systems as state
transition systems. In order to implement the abstract operational model, the following
functions have to be realized:
• Initialization of the constraint state,
• Consistency check,
• Entailment check,
• Propagation of constraints, including simplification,
• Reflection of the constraint state,
• Search for the instantiation of variables.
The interface functionstell andask can pass constraints to the solver. The operation

tell (c) passes a constraintc to the constraint solver and then propagates the constraint
in casec is consistent with the constraint store. In this case, it returnstrue and the new
constraint state. Otherwise it returnsfail. The operationask passes a conditional constraint
(if c thenA1 elseA2) to the constraint solver for testing entailment ofc from the constraint
store. It returnsA1, if c is entailed andA2 otherwise. For instance,ask (if 0 6 x then
tell |x| = x) checks whether(06 x) is entailed by the constraint store, and if so, then
(|x| = x) is told to the constraint solver.

The integration of a constraint solver into proof planning serves several purposes:First,
it is used in the process of proof planning to determine whether a certain method can be
legally applied,secondlythe constraint state can be reflected onto ananswer constraint
C, and thirdly the constraint solver searches for instantiations of implicitly existentially
quantified variables.

Fig. 4 summarizes the integration of a constraint solver into proof planning. Some
methods that are available to the planner are interfaced with the constraint solver by the
functionstell or ask that are called when theapplication conditionsare evaluated: the
constraint solver may compute a reflectionC of the constraint state. When the plan is
completed, aninstantiation function instantiates the meta-variableC by the formula
C at each occurrence in the PDS [86].

A method interfacing proof planning with the constraint solverCS is Solve-b that is
shown in Table 4. Theb in the method’s name indicate that it is employed in backward
planning andCS is the parameter determining the particular constraint solver.CSstands
for any constraint solver and can be instantiated by, e.g., a constraint solver for linear
arithmetic in the real numbers, for finite domains, or for set theory.
c is the constraint goal that is closed bySolve-b . The proof schemaof Solve-b

contains a meta-variableC for the answer constraint ofCS. The instantiation ofC is relevant
for line L2 in theproof schemathat suggests that the constraint can logically be derived
from the (yet unknown) answer constraint. Hence, the value forC is used in the recursive
expansion ofSolve steps. Theproof schemaof Solve-b contains a line with the line-
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Fig. 4. Integration of a constraint solver into proof planning.

Table 4

Method: Solve-b( c,CS)

premise L1

conclusions 	L2

appl.cond constraint(c,CS)AND

IF var-in(c) THEN tell (c)

ELSE ask (if c thentrue elsefail)

proof schema L1. C ` C (HYP)

L2. ∆,C ` c (solvCS)

justification solvCS which names the method that derivesc from the instantiation of the
meta-variableC by eliminating conjunctions repeatedly.

The application conditionsof the Solve-b method determine whether a constraint
goal is handled bytell or by ask . The access of the constraint solver viatell is
chosen when the constraint at hand contains an implicitly existentially quantified variable.
Otherwise,ask is chosen. The reason is that new constraint goals that contain only
constants and universally quantified variables cannot be introduced into the constraint
store without loss of generality, whereas constraints with implicitly existentially quantified
variables can.10 The application conditionsare satisfied ifask returnstrue, i.e., c is
entailed by the current constraint store, or iftell returnstrue, i.e., the constraint store
is consistent withc. This gives an account on how the constraint solver is involved in
checking the legal applicability of aSolve method.

The second task of the constraint solver, reflecting the constraint state onto an
answer constraint, is currently performed with the final constraint state. The resulting

10 The introduction of a constraint assumption into the constraint store by forward planning works differently
because proof assumptions can always be introduced.
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Table 5

Method: InitializeCS (T )

premises ⊕ L1

conclusions 	 L4

appl.cond

proof schema L1. ∆,C ` thm (OPEN)

L2. ∆ ` C→ thm (→I;L1)

L3. ∆,T ` C (OPEN)

L4. ∆,T ` thm (→E;L2,L3)

answer constraint formulaC is an assertion about the value restrictions of the implicitly
existentially quantified variables.

Why is it necessary to introduceC anyway? Suppose, we collect restrictions by backward
planning and these are condensed in an answer constraint formulaC. In a formal proof
consisting of forward inference steps,C is stated at the beginning and subsequent proof
steps have to refer toC as an hypothesis, i.e., the hypothesis must occur in goals before
it is actually known. Hence, in order to obtain a correct ND-level proof after the recursive
expansion, a meta-variableC is introduced as a place holder for the formulaC. This
is realized in backward planning by theInitializeCS( Th) method (Table 5) that
reduces a goal

∆ ` thm

to the subgoals

∆,C ` thm, ∆,Th` C,
whereTh is the theory of the constraint solver and whereC holds the place for a formulaC.

InitializeCS combines the ND-rules→I and →E.11 It contributes to the
hierarchization of proof planning since—as a form of precondition abstraction—L3 is
visible as a subgoal only after the method’s expansion because it does not occur in the
premises. Only when the instantiation ofC, C, can also be proven, is the proof completed.

The parameterT in InitializeCS stands for a theoryT for which a particular
constraint solver CST is employed, e.g., set theory or linear arithmetic inR.

3.4. Extension of (mathematical) theories

In knowledge-based proof planning the mathematical domain knowledge consists
not only of axioms, definitions, and theorems but also of methods, control-rules, and
domain-specific external reasoners. This knowledge is hierarchically organized and stored
in theories. �MEGA’s general-purpose proof planner can access a theory base, called
MBase [37], that contains domains such asBase, Set Theory, Calculusand that is currently
extended to further mathematical theories as well.

11→I(ntroduction) is ∆,F`G
∆`F→G .→E(limination) is∆`F→G,∆`F

∆`G .
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4. A case study: Proof planning of limit theorems

We shall now demonstrate knowledge-based proof planning in operation, using the limit
theorems as our domain. These theorems are formulated and proved in the theoryR of the
real numbers.

In the remainder,/,∗,+,−, || denote the division, multiplication, addition, subtraction,
and the absolute value function inR, respectively. Prolog notation is used for constants and
variables.

Limit theorems claim something about the limit lim
x→a f (x) for a functionf or about

continuity. Since the formal definition of lim
x→a f (x) is

∀ε(0< ε→∃δ(0< δ ∧ ∀x(x 6= a ∧ |x − a|< δ ∧ x 6= a→|f (x)− l|< ε))), (2)

the standard proofs of these theorems are often calledε-δ-proofs, i.e., proofs that postulate
the existence of aδ such that a conjecture of the form. . . |X| < ε can be proven under
assumptions of the form. . . |Y | < δ. The class of limit theorems includes the theorem
LIM+ that states that the limit of the sum of two functions is the sum of their limits. The
following sequent formalizes LIM+12

lim
x→a f (x)= l1∧ lim

x→a g(x)= l2 ` lim
x→a(f (x)+ g(x))= l1+ l2, (3)

and after expanding, the definition of lim
x→a, becomes

∀ε1
(
0< ε1→∃δ1

(
0< δ1∧ ∀x1(x1 6= a ∧ |x1− a|< δ1→ |f (x1)− l1|< ε1)

))∧
∀ε2

(
0< ε2→∃δ2

(
0< δ2∧ ∀x2(x2 6= a ∧ |x2− a|< δ2→ |g(x2)− l2|< ε2)

))
` ∀ε(0< ε→∃δ(0< δ ∧ ∀x(x 6= a ∧ |x − a|< δ

→ |(f (x)+ g(x))− (l1+ l2)|< ε
))
.

Similar theorems in this class are LIM– and LIM* for the difference and product
of limits; the theorem ContinuousComp states that the composition of two continuous
functions is continuous;13 Continuous+ states that the sum of two continuous functions
is continuous and similarly Continuous* and Continuous–, and finally there is a myriad of
theorems about the limits of polynomial functions like lim

x→a x
2= a2.

In 1990, Woody Bledsoe [15] proposed several versions of LIM+ as a challenge problem
for automated theorem proving. The simplest versions of LIM+ (Problems 1 and 2 in [15])
are at the edge of what traditional automated theorem provers can prove today (see the
comparison in Section 4.4) but, certainly, LIM* is well beyond their capabilities.

One reason why these proofs are difficult for a system is due to the alternating quantifiers
which require the construction of aδ dependent on a variableε such that certain estimations
hold. This is a nontrivial thing to do and difficult for a student as reported, e.g., in [71].

12 Alternatively LIM+ can be formalized by the assumptions lim
x→a f (x) = l1 and lim

x→a g(x)= l2 and the goal

lim
x→a(f (x)+ g(x))= l1+ l2.
13 The definition of the relationcontinuous(f ) at a pointa builds on lim

x→a f (x).
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In most textbooks, the intelligent instantiation ofδ comes out of the blue which is, of
course, puzzling for a freshman. The typical way a mathematician goes about to discover
the proof of such a theorem is to (incrementally) restrict the possible values ofδ as e.g.,
recorded in the textbook of Bartle and SherbertIntroduction to Real Analysis[7]. The two
authors give a recipe on how to proceed, namely an incremental restriction of a natural
numberk when proving a theorem about the products of limits of sequences(xn) and(yn),
where the definition of lim

n→∞(xn)= x is:

∀ε(0< ε→∃k(0< k ∧ ∀n(n > k→|xn − x|< ε))). (4)

The natural numberk in this definition (4) corresponds to the real numberδ in the
definition (2) of limits of functions. In the proof for products of the limitsx andy of the
sequences(xn) and(yn) respectively, Bartle and Sherbert introduce the auxiliary variables
M1 andM upon whichK depends: “According to Theorem. . . there exists a real number
M1 > 0 such that|xn|6M1 for all n ∈ N and we setM = sup{M1, |y|}. Hence, we have
the estimate

|xn ∗ yn − x ∗ y|6M ∗ |yn − y| +M ∗ |xn − x|.
From the convergence of(xn) and(yn) we conclude that ifε > 0 is given, then there exist
natural numbersk1 andk2 such that ifk16 n, then|xn − x|< ε/2M, and if k26 n, then
|yn − y|< ε/2M. Now letk(ε)= sup{k1, k2}, then ifk(ε)6 n we infer that

|xn ∗ yn − x ∗ y|6M ∗ (ε/2∗M)+M ∗ (ε/2∗M)= ε.
Sinceε is arbitrary, this proves that the sequenceX ∗ Y converges tox ∗ y” [7].

Inspired by a similar mathematical idea, Bledsoe et al. implemented the limit heuristic
for their special-purpose theorem prover, IMPLY [16] which proves formulae of the form
|A| < ε1→ |B| < ε by representingB as a linear combinationB = k ∗ A + l, and by
proving the simpler formulae|k| < M, |A| < ε/2 ∗M, and |l| < ε/2, containing a new
variableM. We shall reconstruct this trick in one of our methods,ComplexEstimate <,
below.

4.1. Methods forε-δ-proofs

In proving limit theorems, frequently the magnitude of a term has to be estimated, that
is, we need estimation methods. One of them isComplexEstimate <, a method for
estimating the magnitude of the absolute value of complex terms such as(f (x)+ g(x))−
(l1+ l2). Table 6 is the frame representation of this method.

This method reduces a goal that is a difficult estimation by three simpler estimation goals
in case there is an assumption matching the formula of line L1 in the planning state. Each
ComplexEstimate < step reduces a goal matching the formula of line L17 to subgoals
that are instances of the formulae in lines L2, L3, and L4, respectively.

Each application ofComplexEstimate < suggests the existence of a real numberM
whose value is restricted by the inequalities in line L2 and L3. ThisM is then used to
propagate the given value restrictions from the implicitly universally quantified variables
to implicitly existentially quantified variables as described in Section 4.3 below.
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Table 6

Method: ComplexEstimate <(a,b, e1, ε)

premises L1,⊕L2,⊕L3,⊕L4

conclusions 	 L17

appl.cond ∃σ GetSubst(a, b)= σ AND

∃k, l CASsplit(aσ,b)= (k, l)
proof schema L1. ∆ ` |a|< e1 ()

L2. ∆ ` |k|6M (OPEN)

L3. ` |aσ |< ε/(2∗M ) (OPEN)

L4. ∆ ` |l|< ε/2 (OPEN)

L5. ` b= b (Ax)

L6. ` b= k ∗ aσ + l (CAS;L5)

L7. ` 0<M (OPEN)

L17. ∆ ` |b|< ε (fix;L6,L7,L1,L2,

L3,L4)

Theapplication conditionevaluates totrue if there is a substitutionσ and termsk andl
such thatb can be represented as a linear combination ofaσ , b = k ∗aσ + l, wherea is the
term of line (0) that is in the current planning state. In this case,ComplexEstimate < is
applicable.

Theproof schemacontains a schematic proof of∆ ` |b|< ε fromb= k ∗aσ+ l and 0<
M , and from the formulae in lines L1, L2, L3, and L4, respectively. The line-justification
in L6 CAS, denotes the application of a CAS that has to verify the equationb= k ∗ aσ + l.
Note that the line L7 does not occur in the⊕-premises although its justification is OPEN,
i.e., it does not have an actual justification yet and, thus, its satisfaction is postponed. In
the line-justification of L17, ‘fix’ abbreviates a whole subproof that employs, among other
things, the Triangle Inequality|X+ Y |6 |X| + |Y |. An explicit proof schemathat details
‘fix’ is in Table 7, where ‘triang’ means an application of the Triangle Inequality, ‘trans’
means an application of the transitivity theorem, etc.

The planner handles the methodComplexEstimate < as follows.
• If an open goal matches the formula of L17 and if an assumption that matches

the formula in line L1 is in the planning state, then the parametersa, b, e1, ε of
ComplexEstimate < are instantiated by this matcher.
• Now theapplication conditionsare evaluated, that is, first the functionGetSubst(a, b)

is invoked which returns, if successful, a substitutionσ . In caseGetSubsthas been
successfully executed, the functionCASsplitcalls a computer algebra system with the
argumentsaσ andb and may return two termsk and l such thatb = k ∗ aσ + l. If
successful, the result instantiates the variablesk andl and theapplication conditions
evaluate totrue. Then the method is applicable
• When applicable, the planner insertsComplexEstimate < into the PDS, the goal

L17 is deleted from the planning state, and the new goals corresponding to lines L2,
L3, and L4 are added to the planning state.
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Table 7
Detail proof schema ofComplexEstimate

Line Hyps Formula Reason

L1. ∆ ` |a|< e1 (assumption)

L2. ∆ ` |k|6M (OPEN)

L3. ∆ ` |aσ |< ε/(2∗M ) (OPEN;L1)

L4. ∆ ` |l|< ε/2 (OPEN)

L5. ` b= b (Ax)

L6. ` b= k ∗ aσ + l (CAS)

L7. ` 0<M (OPEN)

L8. ` |b|6 |k ∗ aσ | + |l| (triang;L6)

L9. ` |b|6 |k| ∗ |aσ | + |l| (Mval;L8)

L10. ∆ ` |k| ∗ |aσ | + |l|6M ∗ |aσ | + |l| (mult6;L2)

L11. ∆ ` |b|6M ∗ |aσ | + |l| (trans6;L9,L10)

L12. ∆ ` M ∗ |aσ |<M ∗ ε/(2∗M ) (mult<;L3)

L13. ∆ ` M ∗ |aσ | + |l|<M ∗ ε/(2∗M )+ |l| (add<;L12)

L14. ∆ ` |b|<M ∗ ε/(2∗M )+ |l| (trans<;L11,L13)

L15. ∆ ` M ∗ ε/(2∗M )+ |l|<M ∗ ε/(2∗M )+ ε/2 (add<;L4)

L16. ∆ ` |b|<M ∗ ε/(2∗M )+ ε/2 (trans<;L14,L15)

L17. ∆ ` |b|< ε (simpl;L16)

• When later on the method is expanded, theproof schemagets inserted into the PDS,
and now this expansion postulates the formula 0<M as a new open subgoal. That is,
line L7 becomes an open subgoal in the next lower planning level which is one way to
benefit from ahierarchicalplanning process. Further recursive expansion of line L6
with the justificationCAS, will call the computer algebra systemµCAS which runs
in plan-generation mode and returns a proof plan for the justification of line L6.

In planning LIM+, at some point the goal∆ ` |f (x) + g(x) − (l1 + l2)| < ε is to
be proven when the assumption∆ ` |f (X1) − l1| < E1 is available. In this sequent,
∆ is a set of assumptions andX1,E1 are implicitly existentially quantified variables.
When theapplication conditionsare evaluatedGetSubstreturns the substitution[x/X1]
and CASsplitreturns the list(1, (g(x) − l2)) since the parametera is instantiated by
(f (X1)− l1) and the parameterb is instantiated by(f (x)+ g(x)− (l1 + l2)). Now the
goal∆ ` |f (x)+ g(x)− (l1+ l2)|< ε is replaced by the new goals

(1) ∆ ` |1|6M ,

(2) ∆ ` |f (X1)− l1|< ε/(2∗M),

(3) ∆ ` |g(x)− l2|< ε/2.
The attentive reader will have noticed that the numerous axioms and the theorems of the

domain theory, such as the Triangle Inequality and others, are conspicuously absent; they
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are invisible at the planning level! Only when a method such asComplexEstimate < is
expanded and theproof schemais inserted into the proof plan, are the appropriate axioms
imported from a theory. This is a very natural way to prove a theorem and it is a means to
avoid the common paradoxical situation of traditional automated theorem proving, where
exactly those axioms, definitions, and theorems that are needed in the particular proof have
to be stated beforehand, i.e., before we even know the proof. It also avoids many other
problems that plague traditional systems: the active axioms are kept at a minimum and the
problem that certain axioms such as commutativity or associativity seduce the system into
senseless behaviour (called semantic noise or trashing [4,109]) as we use the axiom now
in a goal-directed way only for a special well defined purpose.

While ComplexEstimate < proves inequalities by decomposition, other methods
such asSolve-b , Solve-f (see Section 4.3), andSolve * treat (in)equalities more
directly.Solve * is a method that first reduces a goalt1< t2 with the help of an assumption
t ′1< t ′2, wheret1 andt ′1 are unifiable by a substitutionσ , to a subgoalt2σ ′ < t2σ and then
tries to removet2σ ′ < t2σ by aSolve-b method.

UnwrapHyp , a method used in forward planning, highlights a subformula of an
assumption by theFocus method, and then it applies various other methods (e.g.,
AndElimination, ImpliesElimination ) in order to extract the highlighted
subformula as a single assumption. In other words, this method ‘unwraps’ this subformula
out of the original assumption. The ultimate goal of this method in proving limit
theorems is to prepare an assumption such that it can be used as the L1 assumption in
ComplexEstimate <.

The methodRemoveFocus removes a focus which was set byFocus beforehand, the
methodNormalize specifies a tactic that calls submethods such asImpliesIntro-
duction andAndIntroduction . All in all, we have less than two dozen methods for
this (small) mathematical area that by and large correspond to what a student would have
to learn in order to master the field.

4.2. Control-rules

Even the most appropriate methods do not imply that a plan can be found automatically.
In fact, our planner cannot find a plan for LIM+ without additional control knowledge. For
this reason, we manually extracted mathematical problem solving behaviour typically used
for proving limit theorems and translated it into control knowledge explicitly represented
by control-rules. We demonstrate this for the following very simple problem solving
behaviour. (More complicated meta-reasoning is necessary, e.g., for finding proofs by
contradiction. This is, however, beyond the scope of this paper.)
• Linear inequalities can be shown by a direct estimation or by a decomposition of the

term to be estimated. For the latter, often a proof assumption has to be refered to.
This can be translated into the following—verbally expressed—control knowledge for
proof planning,
• Linear inequality goals can be removed by one of the methodsSolve-b , Solve* ,

or by ComplexEstimate <. The latter requires some preparation byUnwrapHyp
which extracts a subformulas from an assumption. AfterwardsComplexEstima-
te < can use the assumptions.
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In turn, this knowledge can be formally encoded into the control-rule

(control-rule prove-inequalities
(kind method-choice)

(IF (goal-matches (?goal (?x < ?y))))
(THEN (prefer ((Solve-b ?goal)

(Solve* ?goal)
(ComplexEstimate< ?goal)
(UnwrapHyp ?goal)))))

This rule together with the following control-rules were sufficient to successfully plan all
the above mentioned limit theorems.

(control-rule CS-Introduction
(kind method-choice)

(IF (last-method Skolemize))
(THEN

(prefer (InitializeCS))))

(control-rule Solve-f-first
(kind method-choice)

(IF (inequality-assumption ?assumption))
(THEN

(prefer (Solve-f ?assumption))))

The latter ensures that any (in)equality assumption is passed to the constraint solver as
soon as possible.

4.3. Computer algebra and constraint solving

As described above, acomputer algebra systemcomputes instantiations of certain
terms when theapplication conditionsof ComplexEstimate < are evaluated. Any such
instantiation has to be verified later on, when the node justified byCASis expanded into a
checkable ND-proof.

Our propagation-based constraint solverCOSIE works for the constraint domainR
which has been extended by the interpreted absolute value functionλx |x| and the division
functionλxλy x/y. Constraints are (in)equalities, i.e., formulae of the formx < y, x 6 y,
or x = y. The constraint store is represented by sets of intervals described by sets of lower
and upper bounds. A new constraint is introduced into the store, simplified, and propagated,
if it is consistent with the current constraint store.

The purpose of the methodsSolve-b (Solve-f ) is to remove a simple (in)equality
goal (to employ a constraint assumption (by adding it to the constraint store or by checking
entailment. See Section 3)).

Solve-b is a candidate method as soon as there is an (in)equality goal. It is applicable
if no implicitly existentially quantified variable occurs in the goal and the goal is entailed
by the current constraint store or if an implicitly existentially quantified variable occurs
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in the goal, and if this constraint goal is consistent with the constraint store. The latter is
checked bytell . All of this information is represented inappl.cond.

For instance, while planning LIM+,Solve-b (0 < δ1) is applicable because no
implicitly existentially quantified variable occurs in this goal and(0< δ1) is entailed by
the constraints(0<D) and(D 6 δ1) from the constraint store. Furthermore,Solve-b is
applicable to the subgoal (|1|6M ) because the implicitly existentially quantified variable
M occurs in the goal and(|1|6M ) is consistent with the constraint store.

The methodSolve-f handles constraint assumptions in forward planning. For
example, while planning LIM+,Solve-f introduced(0< D) into the constraint store
as a constraint hypothesis.

To summarize, while planning the proof of the LIM+ theorem, theSolve steps
(Solve-b andSolve-f ) tell the following sequence of constraints to the constraint
solver

0< ε, 0<D, |1|6M , 0<M , E16 ε/(2∗M),

x =X1, E26 ε/2, x =X2, D 6 δ2,
D 6 δ1, 0<E1, 0<E2, 0< δ1, 0< δ2,

where the variablesD,E1,E2 and the (Eigen)variablesδ1, δ2, ε are those of the original
planning problem andM is the auxiliary variable introduced byComplexEstimate <.
Now the upper boundε/2 for E1 is propagated from the constraints 16 M andE1 6
ε/(2∗M). This leads to final constraint store shown in Table 8.

In other words, we have that a lower bound forE2 is 0 and an upper bound forE2 is
ε/2; a lower bound forD is 0 and the upper bounds areδ1, δ2, etc, and the attentive reader
familiar with ε-δ-proofs will no doubt have noticed that this is exactly the sequence of
events a good student would have to go through in a maths class.

At the end of the session, a reflection of the final constraint store removes redundant
bounds such asε/(2 ∗M). The reflection favours numeric constants and symbolic terms
without variables and the answer constraint (with respect to the variablesE1,E2,D)
resulting from the reflection is

C(D,E1,E2): E16 ε/2∧E26 ε/2∧D 6 δ1∧D 6 δ2.

Table 8

0 < δ1 < +∞;

0 < δ2 < +∞;

0 < ε < +∞;

0 < E2 6 ε/2;

0 < D 6 δ2, δ1;
0 < E1 6 ε/(2∗M ), ε/2;

1 6 M 6 ε/(2∗E1);
−∞ < X1 = x =X2 < +∞
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Fig. 5. Unexpanded proof plan for LIM+.

The planner instantiates the meta-variableC by C. Later the constraint solver searches for
terms to instantiateD,E1, E2, andM , respectively and then the planner can instantiate
these variables everywhere in the proof plan. For LIM+ the instantiation of the implicitly
existentially quantified variables is [D/δ =min(δ1, δ2)], [E1/ε1= ε/2], [E2/ε2= ε/2].

4.4. Results

We successfully planned all the challenge problems of Woody Bledsoe, i.e., the
limit theorems LIM+, LIM–, LIM*, the theorems ContinuousComp, Continuous+,
Continuous–, Continuous*, lim

x→a x = a, lim
x→a c = c, and many theorems about limits of

polynomial functions like lim
x→a x

2= a2.

A high-level proof plan for LIM+ is shown in Fig. 5, where the dashed parts represent
those methods/subplans that are planned later at a lower hierarchical level. Some of
the subgoals (and corresponding methods) are hidden in the methodUnwrapHyp that
produced subgoals for the next lower level, in particular several inequalities that are
satisfied bySolve-b or Solve *. In the end the expanded plan has 215 nodes.

Among the proven theorems are several that are beyond the capabilities of traditional
systems, e.g., LIM* and ContIfDeriv. One reason why LIM* is more complicated to prove
than LIM+ becomes clear from its plan in Fig. 6. The methodComplexEstimate < is
applied once only in the plan for LIM+, whereas for LIM* this trick has to be applied three
times because the linear decomposition of the termf (x) ∗ g(x) − (l1 ∗ l2) yields more
complicated subgoals than the decomposition off (x) + g(x) − (l1 + l2). Fig. 6 shows
a screen dump of the plan for LIM* that was automatically generated by the�MEGA
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Fig. 6. LIM* proof plan as presented by the�MEGA interface.

Table 9

Theorem �MEGA (matching attempts) OTTER (generated clauses)/mode

LIM+ 346 3650 /spec heuristic for LIM+

LIM+ 346 – / auto mode

LIM* 467 – / any

ContIfDeriv 490 – / any

system. The circles indicate nodes of the plan containing methods and subgoals, the squares
indicate coreferences, and the triangles indicate assumptions and hypotheses in the proof
(they are differentiated by colors, hence not visible in this black and white print); each icon
can be clicked on to display the formula and method it stands for.

A comparison of the search spaces of our proof planning system and the automated
theorem prover, OTTER, shows some interesting characteristics (Table 9).

For a simple version of LIM+ and with a particular strategy, OTTER generates a search
space of 3650 clauses and keeps 1418 clauses.14 This strategy is tailored to LIM+ and
does not work for LIM* or other limit theorems. In auto mode, OTTER generates up to
437, 706, 898 clauses and does not succeed in proving LIM+. In comparison, the search
space of our planner is about 350 matching attempts for LIM+.15

14 Using Bill McCune’s specific input file.
15 This plan can still be optimized.



E. Melis, J. Siekmann / Artificial Intelligence 115 (1999) 65–105 95

Currently, we are looking at all the theorems, examples, and exercises in two chapters
of [7] about limits of sequences and of functions and about continuity. So far we have
found that even more theorems can be proved with the methods and control-rules decribed
above, e.g., the theorem that says: iff (x) converges to zero and the magnitude ofg(x)

has an upper bound, thenf (x) ∗ g(x) converges to zero ( lim
x→a f (x) = 0 ∧ ∃y.|g(x)| <

y→ lim
x→a f (x) ∗ g(x) = 0) or the Squeeze Theorem (for sequences(xn), (yn), and(zn)

of real numbers withxn 6 yn 6 zn for all n ∈ N holds that if lim(xn) = lim(zn),
then (yn) is convergent and lim(xn) = lim(yn) = lim(zn) (Theorem 3.2.7 in [7])). For
some other examples we need additional facts about the particular functions involved,
e.g., for trigonometric functions we need to know the laws of trigonometry. Of course,
in order to find proof plans for all the theorems, examples, and exercises in the two
chapters, we have to introduce some general methods likeIndirect and a few more
methods for estimation, e.g.,FactorialEstimate , EnvironmentEstimate , and
ComplexEstimate >. The latter method is needed, for instance, for proving the theorem
LIMdiv and the theorem about the uniqueness of a limit.16 This indicates that a couple
of dozen methods and control rules really will captureall the mathematical knowledge
that appears to be necessary to master this albeit small branch of mathematics. With new
methods the control knowledge has to be extended too.

Some of the examples of these two chapter of [7] cannot be proof planned automatically
with our current repertoire of techniques, e.g., Theorem 4.1.8, Exercise 4.1(3), and
Exercise 4.1(12). The reason is that they would need a strategy for eagerly instantiating
variables that is flexibly controlled. In addition, with the progress in a textbook, more
methods become available that employ the theorems already proved. For instance, the
application of the actual limit theorems LIM+, LIM*, etc. can greatly facilitate the solution
of examples and exercises in the chapters as compared withε-δ-proofs. This means that
we need to plan with different sets of methods. These problems gave rise to further develop
our proof planning approach to a multi-strategy planning [88,90].

Currently, the planner, the domain, andµCAS are implemented in Common LISP
(CLOS) while the Lovely� User Interface, L�UI, as well as the constraint solver are
implemented in the concurrent logic programming language Mozart–Oz [112].

5. The use of proof plans for proof presentation

Well known from paradigm shifts [68] in physics, for example, is that problems that are
puzzling at best or outright unsolvable in the old paradigm, suddenly fall into place like
in a beautiful jigsaw puzzle. In the case of proof planning, this seems to apply at least to
proof presentation and proof by analogy as well.

The output of traditional automated theorem proving systems lists a sequence of
calculus-level steps, such as resolution and paramodulation. These ‘proofs’ are hardly
readable, let alone intuitively understandable as a mathematical proof. A comprehensible
explanation is essential, however, at least for interactive and (semi)automated theorem
proving systems that could possibly provide a basis for a tutor or assistant system.

16 This theorem is formalized by: lim
x→a f (x)= l1 ∧ lim

x→a f (x)= l2→ l1 = l2.
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This problem was recognized long ago inter alia by Peter Andrews [2], Frank
Pfenning [100], Dale Miller [94], Christoph Lingenfelder [74], Alan Robinson [105],
Huang and Siekmann [52] and others and several attempts have been made to produce
proof presentations based on ND-rules. In fact, proof presentation became a research
topic in its own right [36]. More recently, the presentation of proofs (found by traditional
automated theorem proving systems) in natural language has been realized in ILF [29],
Theorema [18], andPROVERB [51]. ILF provides a schematic verbalization, whereas
PROVERBabstracts the calculus-level proof first to the so-called assertion level17 and then
employs linguistic knowledge in order to combine single assertion level steps into a more
coherent natural language presentation.

Nevertheless, there was no satisfying general approach to acomprehensibleproof
presentation so far. We think that this is due to the fact that all automated proof presentation
up to now is based on representations of proofs found by traditional theorem proving
systems whose level of abstraction is too low and too far removed from the mathematical
theory and structures the proof is formulated in. Even the verbalization at the somewhat
abstract assertion level is not necessarily the most natural and best way to communicate
a proof to mathematicians or students. Verbalized proof steps can be farmore abstract
than assertion-level steps and may contain explanations too. For example, proofs of limit
theorems in Bartle and Sherbert’s book [7] contain phrases like “We need to estimate the
magnitude of. . .” and there may also be explanations on why a certain step was chosen in
the proof.

Now, the abstraction level(s) contained in proofplans provide the basis for a truly
hierarchical presentation and the design of domain-dependent and -independent methods
leads naturally to the design of verbalization schemes that reflect mathematical practice
and standard. Furthermore, the subproofs contributed by domain-specific reasoners such
as constraint solvers can be easily isolated and then represented separately in the final
presentation.

A full, still abstract, verbalization of the LIM+ plan that uses a schematic verbalization
of methods, is the following.18

To show thatf (x)+ g(x) converges toL1+L2.
(∗) Let δ be smaller thanδ1, δ be smaller thanδ2, andε1, ε2 be smaller thanε/2.
(1) We need to estimate the magnitude of∣∣f (x)+ g(x)− (L1+L2)

∣∣= ∣∣(f (x)−L1)+ (g(x)−L2)
∣∣.

(2) To do this, we use the Triangle Inequality and obtain∣∣f (x)+ g(x)− (L1+L2)
∣∣6 ∣∣f (x)−L1

∣∣+ ∣∣g(x)−L2
∣∣.

This goal can be shown in three steps:
• There exists anM such that|1|6M, and
• |f (x)−L1|< ε/(2∗M), and

17 An assertion is an axiom or definition the proof refers to.
18 The occurrence ofM is due to the more general presentation needed for other limit theorems. It is, strictly

speaking, not necessary for the LIM+ verbalization. The itemization would not occur in a textbook but is used
here to show the correspondence between verbalization and proof plan.
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• |g(x)−L2|< ε/2.
(3) For a real number 16M
(4) by hypothesis, ifε/(2 ∗M) > 0, there existsδ1 such that for allx, if |x − a|< δ1

then|f (x)−L1|< ε/(2∗M)
(5) by hypothesis ifε/2> 0, there existsδ2 such that for allx, if |x − a| < δ2, then
|g(x)−L2|< ε/2.

(6) From(∗) follows that
(7) if |x − a|<D, then∣∣f (x)+ g(x)− (L1+L2)

∣∣6M ∗ |f (x)−L1| + |g(x)−L2|
<M ∗ ε/(2∗M)+ ε/2= ε

and therefore|f (x)+ g(x)− (L1+L2)|< ε.
(8) Sinceε > 0 is arbitrary,
(9) the theorem is proven.

Every item in the above verbalization corresponds directly to (parts of) one of the
methods in Fig. 5. Not every method is verbalized andComplexEstimate has several
verbalization parts. In more detail, the steps (1), (2), and (7) above are generated as
a verbalization ofComplexEstimate <; steps (3), (4), and (5) verbalize subproofs
of ComplexEstimate <’s subgoals, and step(∗) verbalizesInitializeCS by the
answer constraint formula.

Fig. 7. Screen shot of�MEGA showing a proof plan of LIM+ and a local verbalization.
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Currently, the verbalization of single methods and of whole proof plans is automatically
generated and presented in a hypertext window of�MEGA’s interfaceL�UI [87,89] as
shown in Fig. 7 in the bottom right window. The local hypertext verbalization, i.e., the
verbalization of a method, corresponds to the nodes (methods) in the plan that are clicked
on. Proofs of subgoals produced by the method are linked by hyperlinks. The global
verbalization of a whole plan can still be improved considerably. Linguistic knowledge has
to be employed and for combining the verbalization of several methods into a nice linear
presentation of the whole proof plan as in the automatic verbalization of the assertion-level
proofs [51] discussed above.

6. Conclusion

This article introducesknowledge-basedproof planning that borrows techniques and
formalisms from many branches of AI, such as hierarchical planning, knowledge
representation in frames and explicitly represented control-rules, constraint solving,
search-based deduction systems as well as tactical and meta-level reasoning. We use a
general-purpose planner and we encode the mathematical domain knowledge, as we may
find it in a graduate textbook on mathematics, into methods, theory-specific reasoners, and
control-rules.

Control-rules make the control far more flexible and considerably extend themeta-level
reasoningfacilities of proof planning that are used for global guidance. This declaratively
represented control knowledge can express conditions for a decision that depends on the
current planning state, the planning history, failed proof attempts, the current partial proof
plan, the constraint state, the available resources, the user model, the theory in which to
plan, typical models of the theory, etc. and the solution of the more difficult problems
would have been impossible without it.

In contrast to conventional planning domains, a proof planning domain is represented
by mathematical theories, such asgroup theoryor calculus, that contain as usual axioms,
definitions, theorems, and lemmata but also operators, control-rules, and domain-specific
external reasoners. The operators, called methods, represent natural mathematical proof
steps and the control-rules encode mathematical knowledge on how to proceed when
searching for a proof.

For a well known mathematical domain, the limit theorems which we used as an example
to serve the need of demonstration, we have collected the relevant mathematical knowledge
and represented it in methods and control rules, and also used existing representations of
a constraint solver and a computer algebra system. Based on this knowledge,�MEGA’s
general-purpose proof planner was able to prove more difficult than other current proof
planners and than traditional theorem proving systems.

Todays traditional theorem proving systems, such as OTTER or SPASS can search
spaces of several billion clauses. The maximal proof length that can be found that way is
around several hundred resolution or paramodulation steps. With proof planning we could
potentially find aplanof several hundred steps that could then be expanded into a calculus-
level proof of several thousand steps. Proofs of that length are not uncommon for difficult
mathematical theorems but also arise in industrial applications, e.g., in program verification
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tasks. For instance, the VSE verification system [57], which is now routinely used for
industrial applications in the German Centre for Artificial Intelligence Research (DFKI)
in Saarbrücken, interactively synthesized proofs of up to 8,000 and 10,000 steps for some
difficult assertions in the verification of a television and radio switching program. These
proofs which often represent several weeks of labor with the system, are, by their very
length, one or two orders of magnitude beyond fully automated methods but could come
into the range of possibilities, if the proof planning paradigm turns out to be successful in
these settings as well.

However, our main interest right now is more in everyday mathematics. Sacrificing the
hope that a traditional theorem proving engine based on search at the calculus-level can
ever evolve into a mathematical assistant system, gives way to an alternative within which
traditional automated theorem proving is a rather small but still useful subtask.

Using the well known albeit exiguous mathematical field of limit theorems, we have
been able to show that realistic mathematics can indeed be carried out on a machine.
Metaphorically speaking, we have shown the atom can be split and indeed it gives off
energy—but as a show case for a generally useful device and its everyday application the
test case is still little representative.

Therefore, several Ph.D. students are currently extending our knowledge needed in proof
planning to fields such as linear algebra, analysis, and finite group theory. In particular,
we are planning to set up a distinguished international consortium of mathematicians,
computer scientists, and some interested companies to encode significantly broad areas
of mathematics into MBase and to use this knowledge for proof planning with�MEGA.
We believe that the extraction and explicit representation of the knowledge of wide
mathematical fields will—just like the motivation for CYC—ultimately be useful not only
for computer-supported mathematics but also for mathematical education systems.

6.1. Related work

This work has been deeply influenced by the work of Woody Bledsoe. The knowledge
acquisition for the design of methods for limit proof plans is similar to the ideas in the
special-purpose theorem prover IMPLY [16] and to Beeson’s work [9] whose bias is,
however, more towards special-purpose provers. Beeson’sε-δ-proofs with theMathpert
andWeierstrasssystems were developed in parallel to our’s [83].

More generally, our approach has the use of theory-specific knowledge in common with
other special-purpose theorem provers, such as a system for monoids [38], for geometry,
or for set theory [48].

Closest to our work, is the proof planning approach developed by Alan Bundy for the
CLAM system. As opposed to our (domain-dependent) control knowledge represented in
control-rules,CLAM uses rippling, a domain-independent difference reduction heuristic
which is encoded in the preconditions of methods. LIM+ was proved inCLAM with colored
rippling [117], an extension of rippling but LIM* and other theorems turned out to be too
difficult for CLAM.

As for the integration of external reasoners into automated theorem proving systems,
several attempts have recently been made for integrating CAS’s (cf. [6,27,44,63]) and few
attempts of integrating constraint solving [115] into ATP.
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Our work relates to research in planning, e.g., in Prodigy [96], that uses control-rules.
Weld [122] and Veloso et al. [120] discuss the superiority of knowledge-based search
with a production system of forward-chaining rules over implicitly encoded control, e.g.,
by functional rating. Such control-rules were first explored in SOAR [69] and then in
Prodigy [96]. Gerberding and Noltemeier [40] formulate program-like rules for strategies
in theorem proving by mathematical induction.

Very recently, there has been a related approach for presenting proofs that verbalizes
proofsmanuallyfound with the tactical prover Nuprl [49]. It also verbalizes proofs at a
more abstract level.

Last but not least, the presented work owes to other developments in the�MEGA group,
in particular, the design of methods [54], the integration of computer algebra systems [63],
and analogy-driven proof plan construction [82,93].
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