
Deduction in the
Verification Support Environment (VSE)

Dieter Hut ter , Bruno Langenstein, Claus Sengler,
JSrg H. Siekmann, Werner Stephan, Andreas Wolpers

Deutsches Forschungszentrum f/Jr K/instliche Intelligenz GmbH
Stuhlsatzenhausweg 3, D-66123 Saarbr/icken, Germany

(n a m e)@dfki .uni-sb.de

A b s t r a c t . The reliability of complex software systems is becoming in-
creasingly important for the technical systems they are embedded in. In
order to assure the highest levels of trustworthiness of software formal
methods for the development of software are required. The VSE-tool was
developed by a consortium of German universities and industry to make
a tool available which supports this formal development process.
VSE is based on a particular method for programming in the large. This
method is embodied in an administration system to edit and maintain
formal developments. A deduction component is integrated into this ad-
ministration system in order to provide proof support for the formal
concepts.
In parallel to the development of the system itself, two large case studies
were conducted in close collaboration with an industrial partner. In both
cases components of systems previously developed by the industry were
re-developed from scratch, starting with a formal specification derived
from the original documents.
This paper focuses on the deduction component and its integration. We
use a part of one of the industrial case studies in order to illustrate
the important aspects of the deduction component: We argue that a
close integration which makes the structure of developments visible for
the theorem prover is necessary for an efficient treatment of changes
and an indispensable structuring of the deduction process itself. Also
we commend an architecture for interactive strategic theorem proving
which has turned out to be adequate for applications in the context of
formal program development. The last one of the three main sections
addresses the important point of detecting bugs in implementations and
specifications.

1 I n t r o d u c t i o n

The reliability of complex software systems is becoming increasingly i m p o r t a n t
for the technical systems they are embedded in. Malfunct ioning of software sys-
tems caused by design flaws or faul ty implementa t ions m a y lead to loss or gar-
bling of da ta , breach of security, danger to life and limb, and, in a lmost all cases,
severe economic losses.

269

Led by the German Information Security Agency (Bundesamt ffir Sicher-
heit in der Informationstechnik, BSI) a catalog of criteria for the evaluation of
the security of information technology systems has been developed in Germany
[IT-89]. In the assessment of a system's trustworthiness, the development process
plays a major role. Requirements to the development process break down into
aspects of (the formulation of) security and/or safety requirements, the overall
structure of the system, and the implementation. The highest levels of quality
require, to a varying extent, the use of formal methods. The BSI thus decided on
the development of a tool to support the use of formal methods during all stages
of the design process. Starting in 1991 the VSE system [BCC+92] was developed
by a consortium consisting of Dornier/DASA, Friedrichshafen, the German Re-
search Center for Artificial Intelligence (DFKI), Saarbrficken, the Gesellschaft
ffir Prozet~rechner-Programmierung (GPP), Miinchen, the University of Karl-
sruhe, and the University of Ulm.

In August 1994 the first prototype was delivered, tested, and finally accepted
by the BSI.

VSE is based on a particular method for programming in the large. This
method is embodied in an administration system to edit and maintain formal
developments. A deduction component is integrated into this administration sys-
tem in order to provide proof support for the formal concepts.

This paper focuses on the deduction component and its integration. A part
of an industrial case study called PERSEUS is used to illustrate the main ideas.
The case study is part of an access control system for nuclear power plants. The
task was to guarantee that only authorized staff is present in each area of the
plant. The part we wilt be looking at is concerned with the manipulation of the
rights of persons to enter different areas of the plant.

The paper is organized as follows. In the following section we give a survey
of the VSE system and its underlying formal concepts. In section three we give
a more detailed description of the part of the case study which is used in the
following. We then discuss the integration of the deduction component into the
administration system. We argue that a close integration which makes the struc-
ture of developments visible for the theorem prover is necessary for an efficient
treatment of changes and an indispensable structuring of the deduction process
itself. The next section describes what could be called interactive strategic the-
orem proving. This architecture has turned out to be adequate for applications
in the context of formal program development. The last one of the three main
sections addresses the important point of detecting bugs in implementations and
specifications.

2 T h e V S E S y s t e m

We begin with a survey of the VSE system introducing some underlying formal
notions as well as the basic constituents of the systems in its technical realization.
We will also mention the two industrial case studies that were carried out in the
project.

270

2.1 T h e G e n e r a l M e t h o d

VSE is based on a method for the top-down development of structured, for-
mal specifications and their stepwise implementation (refinement) using abstract
intermediate layers represented by specifications.

safety conditions ~ +t,,iK e
(spocHIcatlon) "T" sa s

.p.o..o..o~ \
T correctness of ~.

~"~ ~ Implementation �9

Implementation by IIIIHIII
abstract programs ~ J ~ Im

+/
specification

implementation

set of proof obligations

Fig. 1. The VSE Method

KZT--"- -
I g=;'rs ~

| first-order
L proofs

Refinement steps are specified by means of abstract p,vgrams that use con-
cepts from the lower (import) level in order to implement the more abstract ones
on the export level. The bot tom layer is given by a collection of predefined con-
cepts that can directly be realized in a target programming language. Modularity
in this context means that sub-specifications can be implemented separately.

At each level, additional safety and/or security requirements can be formu-
lated in addition to the system specification. These requirements are formalized
in a separate specification which can be mapped onto the systems specification,
such a connection is called a satisfies-link between the two.

Most of the development steps lead to so-called proof obligations. These for-
malized assertions are handed over to the deduction component where the actual
verification takes place.

Figure 1 shows the general method for formal software development in VSE.
The concrete instance of this general method depends on the formal con-

cepts used for modeling the desired system. Specification concepts covered in
the current (first) version of the VSE system include abstract data types and
state transition systems.

A b s t r a c t D a t a T y p e s Abstract Data Types (ADTs) provide a view on a sys-
tem as an algebra, given by a (typed) collection of sets of data objects and a

271

(typed) collection of operations which manipulate these data.
Elementary specifications (of algebras), so-called theories are made up of a

signature and a set of axioms. The signature part introduces the vocabulary
of the data type. It consists of a set of types and a set of typed function and
predicate symbols. VSE-SL allows full first-order logic to describe the semantics
of these symbols in the axiom part.

In general there will be many (non-isomorphic) algebras that satisfy a given
specification. VSE-SL allows to restrict the class of models to (term) generated
or even to freely generated models. These restrictions lead to induction principles
that are used in the verification process.

An example of a theory is given below:

THEORY Rights
USING : Topology;

Persons
TYPES : AccessRel =

GENERATED BY emptyRel I
grant(Person,Area,AccessRel) I
refuse(Person,Area,AccessRel)

PREDICATES : hasAccess : Person,Area,AccessRel;
inRel : Person,Area,AccessRel

VARS : p, pO, pl : Person;
b, bO, bl : Area;
m : AccessRel

AXIOMS : NOT inRel(pO, bO, emptyRel);
inRel(pO,bO,grant(pO, bO, m));
NOT inRel(p0, bO, refuse(p0, bO, m));
bO /= bl OR pO /= pl
-> (inRel(p0, bO, m) <->

inRel(pO, b0, grant(pl, bl, m)));
bO /= bl OR pO /= pl
-> (inRel(pO, bO, m) <->

inRel(pO, b0, refuse(pl, bl, m)));
hasAccess(p, b, m) <->
(b = extern
OR visitor(p) AND inRel(leader(p), b, m)
OR NOT visitor (p) AND

(inRel(p, b, m) OR hasAccess(p, next(b), m)))
THEORYEND

The theory Rights corresponds to representation of the rights of persons to
enter different areas of the plant. It refers to the (sub-) theories Topology (e.g.
using the function next) which represents the topology of the plant and Persons
(e.g. using the predicate v i s i t o r) modelling the different (types of) persons like
staff members or visitors. Among other operations this kind of enrichment gives
rise to a (horizontal) structure of abstract data type specifications.

272

In the refinement process functions and predicates from the export specifica-
tion are implemented by (recursive) procedures that use function and predicate
symbols from a given import specification. The relation between concepts from
the export specification and parts of the implementation is given by a mapping.
The theory underlying these concepts has been described in [Rei92b], [Rei92a].

Specif icat ion of S ta te Trans i t ion Sys tems State transition systems are used
to describe systems where the history of operations executed has an effect on
the results produced. Here the operations cause side effects on a global system
state.

State transition systems in VSE-SL are given by so-cMled objects. As an
example, we present below a simple specification of a state transition system
which is, like the theory presented in the last section, taken from the case study
PERSEUS conducted in the VSE project.

OBJECT PlantAccess

USING : Rights

DATA : Matrix : AccessRel

VARS : p, q : person;

b : area

OPERATIONS :

PROC access(p : Person,b : Area) : bool

ENSURES IF hasAccess (p, b, Matrix)

THEN RESULT = T

ELSE RESULT = F

FI

PROC setaccess(p : Person,b : Area,z : bool)

MODIFIES Matrix

ENSURES IF z = T

THEN Matrix = grant(p, b, Matrix')

ELSE Matrix = refuse(p, b, Matrix')

FI

INITIAL : leader(p) = leader(q) ->

(hasAccess(p, b, Matrix) <->

hasAccess (q, b, Matrix))

OBJECTEND

The state space is given implicitly through the items in the DATA-slot. The
variables declared here are state-dependent and may be changed by the opera-
tions. Their types (sorts) are taken from the theory mentioned in the USING-slot.
Additional local variables may be declared in a VtRS-slot. The behavior of Op-
erations is described by pre- and postconditions. In the postcondition a variable
x ' denotes the value of x prior to the execution of an operation. The precondi-
tions form a complete case-distinction. In the RESULT-slot the value returned by
an operation is specified. By an additional REQUIRES-slot one might restrict the
situations in which the operations may be executed. These requirements have to

273

be respected if an operation is used for example as an import operation in some
implementation.

Consider the example of the procedure se t acces s . Matrix ' denotes the value
of Matrix prior to the execution of the operation Se taccess . Thus, in case the
operation is called with z equal to T the new value of Matrix is computed from
its current value by applying gran t with additional parameters p and b on it.

The set of initial states (and perhaps also a global invariant of the system) is
specified by first-order formulae. As with ADTs there are also generic state tran-
sition systems, and unions of such systems. Export operations of state transition
systems are implemented in the VSE system by pieces of abstract programs that
use operations from some import specification.

An introduction to state transition systems of this kind can be found in
[RvHO91] while a comprehensive description of the syntax and semantics of
state transition systems is given in [VSE94].

2.2 System Support

VSE is an integrated system that supports the user at all stages of the develop-
ment process following the method outlined above. Basically there are two kinds
of activities, editing and proving, that are in fact interleaved. This means that
the user might edit (some part of) a specification, prove certain safety proper-
ties, edit an import specification and a refinement, prove the refinement correct,
and then continue his work for example by a further refinement step.

The work is organized via a so-called development graph that displays the
representation of a (partial) development to the user and allows him to continue
his work at a node he wants to expand. The development graph also gives the user
access to status information that is maintained by the administration system.
This correctness management controls the work in the various development units
and their proof obligations. It keeps track of dependencies between a proof and
those parts of the specification which are used during the proof. Changing these
parts of the specification will invalidate the related proofs while other proofs
may not be affected.

The main system support w.r.t, editing specifications and implementations is
syntactical analysis including type-checking. If a development step is completely
edited and successfully checked, a logical database related to this step is created
by the system. It is initialized by the axioms computed from the specifications
involved and the proof obligations that correspond to the development step.
The verification process then takes place in the context of this database where
all kinds of logical information, like axioms, lemmata, and proofs are stored.
When a branch of the development is completed, the actual code of the target
language is generated by the system.

2.3 Case S tud ies

In parallel to the development of the system itself, two large case studies were
conducted in close collaboration with Dornier. In both cases components of sys-

274

terns previously developed by Dornier were re-developed from scratch, starting
with a formal specification derived from the original documents. The selection
of the case studies was oriented along the specification paradigms supported by
the VSE system.

The first case study deals with a system that controls the exchange of pro-
grams between radio stations, including the booking of leased communication
lines. Within this case study, the kernel of the booking system was re-developed.
It contains a complicated algorithm to re-schedule already booked transmis-
sions in the case of conflicts. The booking system was modeled as an abstract
data type, i.e. the booking system can be viewed as a structured collection of
operations. The entire case study consists of about 5000 lines of specifications
(including the security model), and 8000 lines of implemented source code.

The second case study named PERSEUS demonstrates the use of state tran-
sition systems. It is (part of) an access control system for nuclear power plants.
Again the safety relevant kernel of the system, which supports the tracking and
control of movements within a plant, was re-developed. This case study, which
begun later, comprises currently about 3000 lines of specifications, which were
partially implemented in 2000 lines of code.

2.4 D e d u c t i o n

A distinguishing feature of the VSE system is that it offers deductive support for
all formal concepts. This takes into account the experience that one of the main
limiting factors for the application of formal methods in an industrial context is
machine assistance for the construction of proofs.

Apart from actualizations of generic specifications, there are two major kinds
of links in development graphs that lead to proof obligations, satisfies-links be-
tween systems specifications and additional safety and/or security properties and
refinement steps. Safety and/or security properties lead to assertions in first-
order predicate logic while in the case of refinements we have to prove assertions
about programs. These are formulated in a variant of Dynamic Logic (DL), see
[Pra76].

The deduction component is made up of two closely integrated provers: the
KIV system (Karlsruhe Interactive Verifier) and the INKA system (INduction-
prover KArlsruhe), see [HRS90] and [BHHW86]. KIV is mainly used for proofs
in DL while INKA provides strategies for first-order assertions, in particular
for inductive proofs. Both systems follow the paradigm of interactive, strategic
theorem proving.

3 P E R S E U S

As mentioned before we will use a part of the second case study PERSEUS to
demonstrate the main features of the deductive component and its integration
into the administration system. While in the first case study the safety require-
ments were concerned with the problem of exclusive use on lines, here the task

275

was to guarantee that only authorized staff is present in each area of a nuclear
power plant. A small par t of the development graph concerning the access rights
is given in Figure 2.

The par t we will be looking at is concerned with the manipula t ion of an
access matrix that encodes the rights of persons to enter different areas of the
plant. Persons are either member of the staff or parts of visitor groups who
are always escorted by a member of the staff (the so-called leader of a group).
Visitors have same access rights to the areas as their leader (but may only enter
an area together with their leader). In order to simplify mat te rs staff members
are always their own leader regardless whether they escort a visitor group or
not.

AccessLis~s Ar Lists ~ ~

Perfill

(

Fig. 2. A Development Graph

On the top-level we have the specification of an object P l a n t A c c e s s which
provides operations for looking up (acce s s) and changing entries (s e t a c c e s s) in
the access mat r ix (Matr ix) . It uses abstract data types for matr ixes (AccessRel) ,
persons (person) , and areas (a rea) given by the structured theory R i g h t s .

In a typical refinement step we re-specify the theory P l a n t A c c e s s on a lower
specification level making some implementa t ion decisions. For instance, we im-
plement the access relation by a property list and define procedures G e t _ a c c e s s

and S e t _ a c c e s s which operate on property lists and correspond to the functions
a c c e s s and setaccess specified in the theory R i g h t s .

Next, we implement the access mat r ix in the theory A c c e s s L i s t s . A da ta type
t c c e s s L i s t is specified as a property list with persons as i tems and areas as
values. An entry of a person p with value a denotes tha t p has access to a.
Persons may occur several t imes in the property list specifying access rights to
different areas.

276

THEORY AccessLists

USING : Persons;

Topology

TYPES : AccessList = FREELY GENERATED BY

nil]

blst(getPerson : Person,getArea : area,rest : AccessList)

FUNCTIONS : DEL : Person,Area,AccessList -> AccessList

PREDICATES : in_list : Person,Area,AccessList

VARS : b : area; p : person; 1 : AccessList

ALGORITHMS : DEFPRED in_list(p, b, I) <->

SWITCH 1 IN

CASE nil : FALSE

CASE blst : IF getPerson(1) = p

THEN IF getArea(1) = b

THEN TRUE

ELSE in_list(p, b, rest (i))

FI

ELSE in_list(p, b, rest(l))

FI

NI;

THEORYEND

List of areas are defined in tile theory AreaLists. Especially, the theory
provides a funct ion h i g h e r A r e a s of an area, a which provides a list of all areas
wi th higher securi ty level than a.

THEORY AreaLists

USING : Topology

TYPES : areaList =

FREELY GENERATED BY no_area I
add area(first:area, rest:areaList)

FUNCTIONS : higherAreas : area -> areaList

PREDICATES : elem : area, areaList;

< : areaList, areaList

VARS : b, bl, b2 : area;

I, Ii : areaList

ALGORITHMS : DEFPKE/) elem(b, I) <->

SWITCH i IN

CASE no_area : FALSE

CASE add_area : IF first(l) = b THEN TRUE

ELSE elem(b, rest(l)) FI

NI;

DEFPRED 1 < 11 <->

SWITCH 1 IN

CASE no_area : Ii /= no_area

277

CASE add_area : IF 11 = no_area THEN FALSE

ELSE rest(l) < rest(ll) FI

NI

AXIOMS : b2 elem higherAreas(bl) <-> (b2 > bl OR b2 = bl)

THEORYEND

Based on the theories AccessLists and AreaLists the procedures Get_Access

and Set_Access are defined which implement the functions access and setaccess.

Thus, Ge t_Access implements the lookup whether a person is allowed to enter
a specific area. I t takes into considerat ion the access r ights of visitors and an
addi t ional requirement tha t persons who have access to a specific area have also
access to less secure areas, e x t e r n denotes the area outside the plant which is
accessible by all persons.

FUNCTION Get_Access

PARAMS : p_person : IN Person;

p_area : IN Area

RESULT : BOOL

BODY : DECLARE

v_res: Bool:=F;

IF p_area = extern THEN v_res := T

ELSE IF visitor(p_person)

THEN IF AccessToArea(leader(p_person),

higherAreas(p_area)) = t

THEN v_res := T ELSE v_res := F FI

ELSE IF AccessToArea(p_person,

higherAreas(p_area)) = t

THEN v_res := T ELSE v_res := F FI

FI

FI;

RETURN v_res

FUNCTIONEND

The procedure Se t_Acces s grants or refuses (depending on the value o f p _ e n t r y)
a person access to a specific area..

PROCEDURE Set_Access

PARAMS : p_person : IN person;

p_area : IN area;

p_entry : IN B00L

BODY: IF p_entry = t

THEN IF NOT in_list(p_person, p_area, List)

THEN List := blst(p_person, p_area, List)

FI
ELSE DelAccessToAreas(p_person, higherAreas(p_area))
FI

PROCEDUREEND

278

In a next step we have to link both specifications, the theory P l a n t A c c e s s
and its implementation. This is done by so-called Refinement steps as it is shown
in Figure 2. It consist of a mapping and a module. Modules, as the module
i _P lan tAcces s below, contain slots for the import specifications, e.g. Map or
A r e a L i s t s , the state dependent variables, e.g. l i s t , and (references to) proce-
dures that implement the abstract operations, e.g. Get_Access or Set_Access.

MODULE i_PlantAr

IMPORTSPEC : Map;AreaLists

DATA : list : AccessList

ELEMENTS : Get_Access, Set_Access, AccessToArea, DelAccessToAreas

MODULEEND

The theory Map provides the relation between the access relations and its im-
plementation as a property list. Based on A c c e s s L i s t s the algorithm l i s t 2 r e l
maps each access list into an access matrix:

THEORY Map

USING : AccessLists;

Rights

FUNCTIONS : list2rel : AccessList -> AccessRel

VAKS : 1 : AccessList

ALGORITHMS :

DEFFUNC list2rel(1) =

IF 1 = nil

THEN emptyRel

ELSE grant (getPerson(1), getArea(1),

list2rel(rest(1)))

FI

THEORYEND

The actual correspondence between the a.bove procedures and the operations
of the specification in P l an tAcces s is given by the mapping m_PlantAccess. In
our case the access matr ix is implemented by an access list while the operations
a c c e s s and s e t a c c e s s are ilnplemented by the procedures Get_Access and
Set_Access.

MAPPING m_PlantAccess

EXPORTSPEC : PlantAccess

IMPLEMENTATION : i_PlantAccess

MAPS : Get_Access IMPLEMENTS access;

Set_Access IMPLEMENTS setaccess;

list2rel(List) IMPLEMENTS matrix

MAPPINGEND

279

4 S t r u c t u r a l D e d u c t i o n

Applying fonnM methods to industrial case studies results in thousands of lines
of specifications which represent the logic database with the help of which var-
ious proof obligations have to be established. As mentioned above this speci-
fication is structured within a development graph (e.g. refer Figure 2 showing
the development-graph of PlantAccess) and thus, the development graph rep-
resents also an structuring of the axiomatization. In Figure 2 doubled arrows
indicate that the target theory of an arrow is (virtually) part of the specification
of the source theory. This so-called theory-graph (the subgraph of the develop-
ment graph wrt. double arrows) specifies which axiomatizations are part within
a theory. E.g. PlantAccess uses the specification of Rights and thus, the axioms
of Rights are visible within the theory of PlantAccess.

Proof obligations are always located at elements - e.g. mappings - of the
development graph. They have to be established wrt. the specifications of the-
ories accessible from this element via. the arrows of the theory-graph. In case
of m_PlantAccess the proof of some obligation may use the specifications of
i_PlantAccess, PlantAccess, and the sub-theories visible in both. Hence, be-
sides being a notion for structured specification the development graph repre-
sents also a structured database for the deduction system. Depending on the
location of the proof obligation the corresponding subgraph of the development
graph specify the axiomatization to be used for the proof.

Also each theory contains a set of lemmata formalizing properties on func-
tions or operations which have been proven within the denoted subgraph. E.g.
Rights may contain lemmata proven with the help of the theories RighCs,
Topology, and Persons.

4.1 Correc tness M a n a g e m e n t

Verifying proof obligations with respect to the actual theories ensures the sound-
ness of the corresponding development step. Since in general specifications con-
tain errors which are usually detected during establishing the proof obligations
there is an interleaved process of adapting the specification and proving theo-
rems. In general changing the specification would invalid all proofs but with the
help of the development graph the impacts of changing the specification can be
restricted to specific parts of the graph while the soundness of proofs in other
parts remains unaffected.

In general changing the axiomatization of a theory 7" will invalid the proofs
(and thus also the lemmata) of all theories using T while underlying theories
used by 7" are not affected. This work can be done without knowing a single
proof just by a static analysis of the development graph. A more elaborated
correctness management can be achieved by a dynamic analysis if we save for
each lemma and proof obligation the set of axioms and lemmata used during the
proof and build up a more elaborated dependency graph of lemmata and proof
obligations.

280

Changing the implementation of a procedure (e.g. Get_Access in module
• has no impacts to other parts of the theory-graph (e.g. the theo-
ries PlantAccess or Map) but will invalid lemmatain the implementation module
i_P:[antAccess and cause new proof obligations in the mapping ra_P:[antAccess.
In order to reduce the amount of new proof obligations which occur after chang-
ing a procedure we use the implementation dependencies of the procedures in
order to determine the subset of proof obligations which are affected by the
change of the procedure.

4.2 Gu id ing Proofs

The first benefit of development graphs to the guidance of proofs is the reduction
of search space by reducing the number of axioms and lemmata available during
the proof. According to the theory-graph only a subset of the overall specification
is available while establishing a proof obligation attached to an element of the
graph.

Second, the development graph defines a partial ordering on theories and
thus, also a partial ordering on functions and predicates defined within these
theories which is used as a skeleton for a simplification ordering on formulas.
E.g. hasAr is defined within the theory 1~ights while v i s i t o r is specified
within Persons. Thus, the system will orient appropriate equivalences as rewrite
rules in order to replace occurrences of hasAccess in favor of v i s i t o r whenever
possible.

Besides the explicit structure given by the development graph each axioma-
tization of a theory is structured again by itself. The a xiomatization is build up
by type declarations, specification of algorithms or procedures, arbitrary first-
order formulas etc. Each of these types of specification result in a set of formulas
which are part of the theory axiom. They differ in the way the deduction system
uses them in order to guide a proof. E.g. algorithms (which are proved to be
terminating) and type declarations are used to create induction schemes. Addi-
tionally, algorithms are used to refine the simplification ordering and to generate
new simplification rules in order to enable symbolic evaluation.

Consider the freely generated datatype a r eaL i s t inside the theory AreaLists .
Its definition introduces a new (structural) induction scheme:

q~(no_area) A Vx: areaList x • no_area -+ ~P(rest(x)) --+ ~ (x)

-+ Vx : areaListqS(x)

Also the definitions of elem and < of the theory AreaLists which are proved
to be terminating suggest (using their recursion orderings) induction schemes
which are (in these cases) identical to the previous structural induction scheme.
The algorithm of l i s t 2 r e l creates the simplification rules

list2rel(nil) --+ emptyRel and

list2rel(blst (p, a, tl)) -+ grant(p, a, l ist 2rel (tl))

281

5 A u t o m a t i o n

Passive proof assistance where the system only controls the user (proof-checking)
is not sufficient in situations where we are faced with proofs of thousands of de-
duction steps. On the other hand conventional fully automated theorem proving
systems that carry out an exhaustive search following some complete (and there-
fore problem independent) strategy also turned out to be inadequate for our kind
of applications. One reason for this is the limited possibility for user interaction
where the activities of the user are restricted to certain preparations (format-
ting the input, choosing the search strategy and additional parameters) before
the system is run.

Proof construction in VSE therefore follows the paradigm of interactive strate-
gic theorem proving. A suitable representation of problem-specific knowledge
which often is available in this context enables the system to exhibit an active
behavior. It is this way that a routine generation of large and often technically
complex proofs becomes possible. The main prerequisite for a strategic user in-
teraction is an architecture that allows the user (and of course also the system)
to analyze the state of a proof. In our architecture a proof state is given by a
partial proof tree. The leaves of such a tree are open subgoals, lemmata or ax-
ioms. The basic activity is to refine a given subgoal by applying (backwards)
proof steps thereby generating new subgoals. These proof steps are given by the
general formalism and by local axioms. The user may also give more precise hints
for a proof plan, which includes directives to apply a certain rule as the next
step if the system gets stuck or he may replace hints. Backtracking, initialized
either by the user or the system itself, allows proof steps to be undone and a
previous situation to be restored. Thus, at each stage of the proof synthesis, the
human user can revise the proof a t tempt specified so far or to give advice how
to fill in the gaps of the proof tree.

Specifying, for instance, the mapping m ~ l a n t t c c e s s the system comes up
with a proof obligation

(Get_Access(p, b, res))true

which states that the procedure Get .Access terminates on all inputs p, b, and
res. Get_Access uses a procedure A c c e s s T o A r e a which is defined as follows:

FUNCTIDN AccessToArea

PARAMS : p_person : IN person;
p_areaList : IN areaList

RESULT : bool
BODY : DECLARE

v res2: bool:=f;
WHILE (NOT p_areaList = no_area) AND v_res2 = f DO

IF in_list(p_person, first(p_areaList), List)
THEN v_res2 := t
ELSE p_areaList := rest(p_areaList) FI

OD;
RETURN v_res2

FUNCTIONEND

282

The deduction system reduces the proof obligation and comes up with a partial
proof tree which contains a single open goal concerning the termination of the
while- loop in AccessToArea (called by Get_hccess) . Now, it is up to the user to
select an appropriate induction rule. After that the system continues and finish
the proof automatically. During the proof several first order subgoals have to be
proven like for instance,

Vx : areaList x ~ no_area -+ res t (x) < x

This goal is proven automatically by induction. The system uses the knowledge of
the termination ordering of < in the theory A r e a L i s t s in order to synthesize an
appropriate induction scheme which results in this case in a structural induction.
In case of

rest(x) = add_area(first(rest(x)), res t (res t (x)))

we obtain an induction step. The system analyses the syntactical differences
between the induction hypothesis

rest(x) ~ no_area--+ rest(rest(x)) < rest(x)

and the induction conclusion

x # no_area -+ res t (x) < x.

These differences (which are underlined above) guide the prover in order to
enable the use of the hypothesis [Hut90]. In this case the prover uses an axiom

Vu, v : areaLis t = a d_area(frst(u), rest(u)) A v = add_area(f t(v), res t (v))
-+ (u < v) ++ (rest(u) < rest(v))

derived from the algorithm defined in the theory t r e a L i s t s to minimize the
syntactical differences and we obtain:

x # no_area --+ rest(rest(x)) < rest(x).

Using the above precondition of the induction step the proof of the induction
step is finished.

6 F i x i n g B u g s

So far, we have looked at the question of how to create proofs for correct the-
orems. In general, however, we will be confronted with errors in specifications,
implementations, or both. Unless we have introduced "corresponding" errors in
specifications and implementations, such errors will result in proof obligations
which are not provable, i.e. we will reach open premises in the proof tree which
can' t be closed. As opposed to e.g. resolution based proofs, one can derive infor-
mat ion about the potential problem by investigating the open premise and the
path from the root of the proof tree to that premise.

283

As an example, consider the proof obligation for the Set_Access operation:

I = l' F- (Set_Access(p, b, z)) (z = t -4 list2rel(l) = grant(p, b, list2rel(l ')))
A (z # t --4 list2rel(l) = refuse(p, b, list2rel(l '))) ,

As mentioned before, list2rel maps access lists to the access matrix. This asserts
that Set_Access will terminate, and afterwards the new value of the access
relation, list2rel(l), will correspond to the old value, list2rel(l '), with p granted
or refused access to b according to the flag z.

While working on the proof, we will encounter an open goal

in_list(p, a, l) F- list2rel(l) = grant(p, a, list2rel(l)) ,

since the implementation will add an entry only if it is not yet there (i.e. if
"-~in_list(p, a, l) is true), while the specification does not treat that case separately.
The goal is true if granting p access to a a second time (since if it is already
in l, it will be in list2rel(1) as well) has no effect. To prove this goal, we need
axioms for the equality on relations. A quick look at the theory R ig h t s reveals
that such axioms have been forgotten.

Here, a sophisticated correctness management pays off. If we add the missing
axioms to the theory Rights , the validity of the proofs for m__Planttccess is not
affected (since we only enlarge the axiom base, and our logic is monotonic). The
change does, however, influence the correctness of an implementation of Righ ts .
As a whole, it becomes invalid. The actual consequence of the change is a larger
set of proof obligations, so that the existing proofs can remain valid. If we have
to change the implementation as well to satisfy the additional proof obligations,
even (some of) the proofs have to become invalid.

In general, an unprovable premise like the one above may hint at an error in
any of the involved procedures or specifications, and a careful analysis is needed
to find out the true reason for the problem.

A large number of bugs were uncovered during the verification process, in
specifications as well as in implementations. In both case studies, bugs in specifi-
cations were more common, and were discovered when proving the security model
or the correctness of an implementation. Also, aspects which were only vaguely
described in the original documents and also difficult to formalize, proved to be
those which significantly delayed the original projects. For the PERSEUS case
study, for example, this included the t reatment of visitor groups, the reaction to
messages which are inconsistent with the current system state (e.g. staff mem-
bers being detected in areas to which they have no access), and combinations
of these problems (e.g. members of a visitor group who 'got lost'). The formal
t reatment of these parts uncovered intricate problems which had been overlooked
in the original design.

7 R e l a t e d W o r k , C u r r e n t R e s e a r c h

In order to compare VSE to other methods and systems we recall the most
important features of the system. The VSE methodology combines data type

284

specifications with an abstract machine notation. Abstract machines are based
on a notion of persistent states. The current version of VSE allows to specify
operations causing state transitions as shown in section 2.1. In that aspect VSE
is similar to Z [Spi92] and systems like EHDM [RvHO91], VDM [Jon90], and
the B Tool [ALN+91].

The methodology for developing abstract machines in B corresponds to that
for state based systems in VSE. In VSE there is, however, a distinction between
the problem of proving the implementation of a state based system correct,
for which dynamic logic proof obligations are generated, and proving that one
specification of a state based systems entails another. The latter is reduced to
predicate logic proof obligations, and used to verify safety conditions and/or
security models developed separately from a specification.

Reasoning about state based systems in the current version of VSE is re-
stricted to invariance properties (given by a separate safety/security model) and
the proof of refinements. However, the approach is compatible for example with
Lamport's TLA, [Lam94]. Current work is concerned with an embedding of the
specification technique into a temporal framework in order to cover for example
eventuality properties and provide more general refinement concepts.

The data type part of VSE is based on abstract data types as compared
to model based techniques like Z and VDM. Here and also in the case of ab-
stract machines VSE supports algorithmic elements. In particular this concerns
recursive definitions in constructive specifications and refinements. The correct-
ness proof for an implementation, which usually involves assertions about the
interplay between recursive procedures, also guarantees the consistency of the
implemented data types relative to the consistency of the data types used for
the implementation.

The algorithmic constructs allow for bridging the gap between concepts in
abstract specifications and the concepts available in real programming languages.
Proof support heavily relies on techniques for proving program properties and for
guiding inductive proofs. In these aspects there is a different emphasis compared
to Z-based systems.

From a more technical point of view considerable effort was made with respect
to the integration of different proof techniques and the integration of the entire
deduction component into a system for editing and storing formal developments.

Powerful proof support relies on specia] tailor-made calculi and an adequate
representation of domain specific knowledge. The deduction component of the
VSE system offers extensive proof support beyond the level of experimental or
ad hoc systems. Up to now it is a heterogeneous system in that it combines two
separated theorem proving systems. In the next version the various strategies will
share a common deductive mechanism but still use different additional structures
that allow for an efficient and highly automated proof generation.

VSE differs from systems with a loose integration of the deduction compo-
nent or stands-alone deduction systems, like HOL, [GM93], or the Boyer-Moore
prover, IBM79], not only by an automatic generation of proof obligations but
also by offering a correctness management that maintains a consistent state

285

of the development including the databases of logical objects. This correctness
management is indispensable for an efficient t reatment of changes. [BTo94]

With respect to both quantitat ive as well as qualitative aspects VSE is ad-
equate for many industrial applications. However, this does not mean that no
improvements are necessary. The VSE consortium is currently working on an en-
hanced version of the system to take notions like object orientation, concurrency,
and real t ime into account.

Research at the DFKI is concerned with the extension of the formal basis of
VSE and a further development of the deduction component. State transition
systems as used in VSE are extended to cover concurrent and embedded systems
based on an interleaving semantics. Temporal logics will be used in order to
reason about these execution sequences.

With respect to the deduction component, we are working on a closer inte-
gration of KIV and INKA and a fl'amework for proof planning which provides
generic concepts and a more explicit representation of proof plans.

References

[ALN+91]

[BCC+92]

[BHHW86]

IBM79]

[BTo94]
[GM93]

[HRS90]

[Hut90]

J.R. Abrial, M.K.O. Lee, D.S. Neilson, P.N. Scharbach, and I.H. Sorensen.
The B-method (software development). In W.J. Prehn, S.; Toetenel, editor,
VDM 91. Formal Software Development Methods. 4th International Sym-
posium of VDM Europe Proceedings., volume 2, pages 398-405. BP Res.,
Sunbury Res. Centre, Sunbury-on-Thames, UK, Springer-Verlag, Berlin,
Germany, October 1991.
P. Baur, E. Canver, J. Cleve, R. Drexler, R. FSrster, P. GShner, H. Hauff,
D. Hutter, P. Kejwal, D. Loevenich, W. Reif, C. Sengler, W. Stephan,
M. Ullmann, and A. Wolpers. The Verification Support Environment VSE.
tn Safety of Computer Control Systems 1992 (SAFECOMP'92), 1992.
Susanne Biundo, Birgit Hummel, Dieter Hutter, and Christoph Walther.

The Karlsruhe Induction Theorem Proving System. In JSrg H. Siekmann,
editor, Proceedings 8 th International Conference on Automated Deduction
(CADE), Lecture Notes in Compute; Science (LNCS) 230, pages 672 - 674,
Oxford, England, 1986. Sprlnger-Verlag, Berlin, Germany.
R. S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, London, England, 1979.
The B-Toolkit. B-Core(UK) Limited, October 1994.
M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.
Maritta Heisel, Wolfgang Reif, and Werner Stephan. Tactical Theorem
Proving in Program Verification. In Proceedings of the 10 th International
Conference on Automated Deduction, volume 449 of Lecture Notes in Artifi-
cial Intelligence (LNAI), pages 115-131. Springer-Verlag, Berlin, Germany,
1990.
Dieter Hurter. Guiding induction proofs. In Mark E. Stickel, editor, Pro-
ceedings 10 th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence (LNAI) 449, pages 147-161, Kai-
serslautern, Germany, July 1990. Springer-Verlag, Berlin, Germany.

286

[IT-89]
[Jon90]

[Lam94]

[Pra76]

[Rei92a]

[Rei92b]

[RvHO91]

[Spi92]

[VSE94]

IT-Sicherheitskriterien. Bundesanzeiger, 1989.
Cliff B. Jones. Systematic Software Development using VDM. Prentice
Hall, 1990.
Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3), 1994.
V. R. Pratt. Semantical Considerations on Floyd-Hoare Logic. In Proc.
17th IEEE Symp. on Foundations of Computer Science, pages 109-121,
October 1976.
Wolfgang Reif. Correctness of Generic Modules. In Nerode and Taitslin,
editors, Symposium on Software Technology and Theoretical Computer Sci-
ence, volume 620 of Lecture Notes in Computer Science (LNCS). Springer-
Verlag, Berlin, Germany, 1992. Tver, Russia.
Wolfgang Reif. Verification of Large Software Systems. In Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 652 of LNCS. Springer-Verlag, Berlin, Germany, 1992. New
Dehli, India.
J. Rushby, F. yon Henke, and S. Owre. An Introduction to Formal Specifi-
cation and Verification using EHDM. Technical report, SRI International,
March 1991.
J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer
Science. Prentice Hall International, 2nd edition, 1992.
Sprachbeschreibung VSE-SL, 1994. Version 1.

