
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220245186

Disjunctions	and	Specificity	in	Suppositional
Defeasible	Argumentation.

Article		in		Logic	Journal	of	IGPL	·	January	2002

DOI:	10.1093/jigpal/10.1.23	·	Source:	DBLP

CITATIONS

0

READS

76

1	author:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Defeasible	argumentation	View	project

Behavioral	experiments	on	human	reasoning	and	decision	View	project

Gustavo	Adrian	Bodanza

Universidad	Nacional	del	Sur

32	PUBLICATIONS			69	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Gustavo	Adrian	Bodanza	on	24	September	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220245186_Disjunctions_and_Specificity_in_Suppositional_Defeasible_Argumentation?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220245186_Disjunctions_and_Specificity_in_Suppositional_Defeasible_Argumentation?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Defeasible-argumentation?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Behavioral-experiments-on-human-reasoning-and-decision?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Bodanza?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Bodanza?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Nacional_del_Sur?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Bodanza?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gustavo_Bodanza?enrichId=rgreq-e40875a329e78d21663c6e9d019fe429-XXX&enrichSource=Y292ZXJQYWdlOzIyMDI0NTE4NjtBUzoxMDE4NDI1NTgxMjgxMzJAMTQwMTI5MjU2Njk0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Interest
G
roup

in
P
ure

and
A
pplied

L
ogics

Volume 10 Number 1 January 2002

LOGIC JOURNAL
of
the

Editor-in-Chief:

DOV M. GABBAY

Executive Editors:

RUY de QUEIROZ

and

HANS J�URGEN OHLBACH

Editorial Board:

Wilfrid Hodges

Hans Kamp

Robert Kowalski

Grigori Mints

Ewa Orlowska

Amir Pnueli

Vaughan Pratt

Saharon Shelah

Johan van Benthem

OXFORD

UNIVERSITY

PRESS

ISSN 1367-0751

Subscription Information
Volume 10, 2002 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$
450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates apply
only when copies are sent to a private address and payment is made by a personal
cheque or credit card.

Order Information

Subscriptions can be accepted for complete volumes only. Prices include air-speeded
delivery to Australia, Canada, India, Japan, New Zealand, and the USA. Delivery
elsewhere is by surface post. Payment is required with all orders and may be made
in the following ways:

Cheque (made payable to Oxford University Press)
National Girobank (account 500 1056)
Credit card (Access, Visa, American Express)
UNESCO Coupons
Bankers: Barclays Bank plc, PO Box 333, Oxford, UK. Code 20-65-18, Account
00715654.

Requests for sample copies, subscription enquiries, orders and changes of address
should be sent to the Journals Subscriptions Department, Oxford University Press,
Great Clarendon Street, Oxford OX2 6DP, UK. Tel: 01865 267907. Fax: 01865
267485.

Advertisements

Advertising enquiries should be addressed to Peter Carpenter, PRC Associates, The
Annexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.
Tel: 0181 786 7376. Fax: 0181 786 7262.

Copyright

c©Oxford University Press 2002. All rights reserved: no part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without
either the prior written permission of the Publishers, or a licence permitting restricted
copying issued in the UK by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1P 9HE, or in the USA by the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.
Logic Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,
March, May, July, September and November by Oxford University Press, Oxford,
UK. Annual subscription price is US$ 450.00. Logic Journal of the IGPL is dis-
tributed by M.A.I.L. America, 2323 Randolph Avenue, Avenel, NJ 07001. Periodical
postage paid at Rahway, New Jersey, USA and at additional entry points.
US Postmasters: Send address changes to Logic Journal of the IGPL, c/o Mercury
International, 365 Blair Road, Avenel, NJ 07001, USA.

Back Issues

The current plus two back volumes are available from Oxford University Press. Previ-
ous volumes can be obtained from the Periodicals Service Company, 11 Main Street,
Germantown, NY 12526 USA. Tel: +1 (518) 537 4700, Fax: +1 (518) 537 5899.

http://www.jigpal.oupjournals.org/
http://www.oup.co.uk/jnls/igpl

Logic Journal of the IGPL
Volume 10, Number 1, January 2002

Contents

1A Spatial Similarity Measure based on Games: Theory and
Practice
M. Aiello

23Disjunctions and Specificity in Suppositional Defeasible
Argumentation
G. Bodanza

51A General Framework for Pattern-Driven Modal Tableaux
L. Fariñas del Cerro and O. Gasquet

85An Open Research Problem: Strong Completeness of R.
Kowalski’s Connection Graph Proof Procedure
J. Siekmann and G. Wrightson

Please visit the journal’s World Wide Web site at
http://www.jigpal.oupjournals.org

http://www.jigpal.oupjournals.org/

Logic Journal of the Interest Group in
Pure and Applied Logics

Editor-in-Chief:

Dov Gabbay

Department of Computer Science
King’s College
Strand
London WC2R 2LS, UK
dg@dcs.kcl.ac.uk
Tel +44 20 7848 2930
Fax +44 20 7240 1071

Executive Editors:

Ruy de Queiroz
Departamento de Informática
UFPE em Recife
Caixa Postal 7851
Recife, PE 50732-970, Brazil
ruy@di.ufpe.br

Hans Jürgen Ohlbach
Inst. für Informatik
Ludwig-Maximilians-Universität
Öttingenstr. 67
D-80538 München
ohlbach@informatik.uni-
muenchen.de
Tel +49 89 2180 9300
Fax +49 89 2180 9311

Editorial Board:

Wilfrid Hodges, QMW, UK
Hans Kamp, Stuttgart, Germany
Robert Kowalski, ICSTM, UK
Grigori Mints, Stanford, USA
Ewa Orlowska, Warsaw, Poland
Amir Pnueli, Weizmann, Israel
Vaughan Pratt, Stanford, USA
Saharon Shelah, Jerusalem
Johan van Benthem,

ILLC, Amsterdam

Scope of the Journal
The Journal is the official publication of the International In-
terest Group in Pure and Applied Logics (IGPL), which is
sponsored by The European Foundation for Logic, Language
and Information (FoLLI), and currently has a membership of
over a thousand researchers in various aspects of logic (sym-
bolic, computational, mathematical, philosophical, etc.) from
all over the world.

The Journal is published in hardcopy and in electronic form
six times per year. Publication is fully electronic: submission,
refereeing, revising, typesetting, checking proofs, and publish-
ing, all is done via electronic mailing and electronic publishing.

Papers are invited in all areas of pure and applied logic, in-
cluding: pure logical systems, proof theory, model theory, re-
cursion theory, type theory, nonclassical logics, nonmonotonic
logic, numerical and uncertainty reasoning, logic and AI, foun-
dations of logic programming, logic and computation, logic
and language, and logic engineering.

The Journal is an attempt to solve a problem in the logic (in
particular, IGPL) community:

◦ Long delays and large backlogs in publication of papers in
current journals.

◦ Very tight time and page number limits on submission.

Papers in the final form should be in LATEX. The review pro-
cess is quick, and is made mainly by other IGPL members.

Submissions
Submissions are made by sending a submission letter to the
e-mail address: jigpl@dcs.kcl.ac.uk, giving the title and the
abstract of the paper, and informing: of how to obtain the file
electronically or, by sending 5 (five) hardcopies of the paper
to the Editor-in-Chief.

URL: http://www.jigpal.oupjournals.org

http://www.jigpal.oupjournals.org/

A Spatial Similarity Measure based
on Games: Theory and Practice

MARCO AIELLO, ILLC and ISIS, University of Amsterdam, Plantage
Muidergracht 24, 1018 TV Amsterdam. The Netherlands.
Email: aiellom@ieee.org

Abstract

Model comparison games can be used not only to decide whether two specific models are equivalent
or not, but also to establish a measurement of difference among a whole class of models. We show
how this is possible in the case of the spatial modal logic S4u of Bennett. The approach results in
a spatial similarity measure based on topological model comparison games. After establishing the
theoretical framework, we move towards practice by giving an algorithm to effectively compute the
similarity measure for a class of topological models widely used in computer science applications:
polygons of the real plane. In the appendix, we briefly overview an implemented system based on
the theoretical framework.

Keywords: model comparison games, similarity measures, modal logics of space, image retrieval

based on spatial relationships

1 Introduction

There are various ways to take space qualitatively. Topology, orientation or distance
have been investigated in a non-quantitative manner. The literature especially is
abundant in mereotopological theories, i.e., theories of parthood P and connection C.
Even though the two primitives can be axiomatized independently, the definition of
part in terms of connection suffices for AI applications. Usually, some fragment of
topology is axiomatized and set inclusion is used to interpret parthood, [13].

Most of the efforts in mereotopology have gone into the axiomatization of specific
theories, disregarding important model theoretic questions. Issues such as model
equivalence are seldom (if ever) addressed. Seeing an old friend from high-school yields
an immediate comparison with the image one had from the school days. Most often,
one immediately notices how many aesthetic features have changed. Recognizing a
place as one already visited involves comparing the present sensory input against
memories of the past sensory inputs. “Are these trees the same as I saw six hours
ago, or are they arranged differently?” An image retrieval system seldom yields an
exact match, more often it yields a series of ‘close’ matches. In computer vision,
object occlusion cannot be disregarded. One ‘sees’ a number of features of an object
and compares them with other sets of features to perform object recognition. Vision
is not a matter of precise matching, it is more closely related to similarity. The core
of the problem lies in the precise definition of ‘close’ match, thus the question shall
be: How similar are two spatial patterns?

The fundamental issues in order to answer this question involve finding an agree-
ment on spatial representation and finding an agreement on a language to describe

1L. J. of the IGPL, Vol. 10 No. 1, pp. 1–22 2002 c©Oxford University Press

2 A Spatial Similarity Measure based on Games: Theory and Practice

spatial patterns. Our choice here falls on modal logics topologically interpreted. The
language, called S4u, is a multi-modal S4*S5 logic interpreted on topological spaces
equipped with valuation functions. S4u is an extension of the simple modal logic S4
with universal and existential modal operators. Thank to the extension one can get
rid of S4’s intrinsic ‘locality’, a known technique used in modal logic, [21]. Bennett
introduced S4u in the spatial setting [10] to encode decidable fragments of the re-
gion connection calculus RCC (a fundamental qualitative spatial reasoning calculus
in AI [25] extending Allen’s ideas [5] from temporal reasoning to spatial reasoning).
The encoding also proved essential to identify maximal tractable fragments of RCC
[26]. S4u has recently been used in [28] as a logic complete with respect to connected
topological spaces. Finally, in the recent and important trend of combining spatial
and temporal formalism, S4u plays an important role [35]. Even though the logical
technique we deploy is similar to that of [10, 26], we would like to remark a shift in
perspective. First, we consider S4u not as a decidable access to RCC but as a general
language of (mereo-)topology: a way to ‘logically’ access topological and mereological
notions. Second, we stress issues of model equivalence and model comparison, not
only spatial representation.

Spatial representation is not only interesting in itself, but also when considering its
applications. It is essential in vision, in spatial reasoning for robotics, in geographical
information systems, just to name a few. Of paramount importance in applications
is the comparison of spatial patterns which must be represented in the same way, in
short, similarity measures are of great importance. We consider similarity measures
and look at their application to image retrieval. Image retrieval is concerned with
the indexing and retrieval of images from a database, according to some desired set
of image features. These features can be as diverse as textual annotations, color,
texture, object shape, and spatial relationships among objects. The way the features
from different images are compared, in order to have a measure of similarity among
images, is what really distinguishes an image retrieval architecture from another one.
We refer to [17] for an overview of image retrieval and more specifically to [27] for
image similarity measures. Here we concentrate on image retrieval based on spatial
relationships at the qualitative level of mereotopology, that is, part-whole relations,
topological relations and topological properties of individual regions (see for instance
[6]). Other image retrieval systems are based on spatial relationships as the main
retrieval feature. The work in [29] is founded on transformation of Voronoi diagrams
and that in [23] on graph matching. An older and known approach to image retrieval
by spatial relationship is in [14]. This seminal work considers the projections of
regions onto two axes imposed on the picture and simple interval relations over the
projections. This approach suffers from not being orientation invariant and from the
inability to deal with overlapping objects. On the positive side is the compactness of
the topological representation of spatial relationships (called 2D strings).

The organization of the paper reflects the transition from theory to practice we are
interested in. We begin by giving the formal (theoretical) details of the modal logic
S4u in Section 2. To get a feeling for its expressive power, we place it in the taxonomy
of mereotopological theories of Cohn-Varzi. In Section 3, we introduce the notion of
topological bisimulation for S4u and show its adequacy. The main theoretical result of
the paper is provided in Section 4 where Ehrenfeucht-Fräıssé style1 model comparison

1For an introduction to Ehrenfeucht-Fräıssé games see, for instance, [18].

2. A GENERAL FRAMEWORK FOR MEREOTOPOLOGY 3

games adequate for S4u are presented and it is shown how the games can be turned
into a distance measure on the space of all topological models of S4u. In Section 5,
we make an ontological commitment and show the distance measure to be decidable
by providing an algorithm to compute it. The proofs of the theorems throughout
the paper are collected at the end in Appendix A. The techniques described in the
paper have been used to implement an image retrieval prototype named IRIS (Image
RetrIeval based on Spatial relationships) which is rapidly overviewed in Appendix B.
The paper is based and extends [1, 2].

2 A general framework for Mereotopology

The proposed framework takes the beaten road of mereotopology by extending topol-
ogy with a mereological theory based on the interpretation of set inclusion as part-
hood. Hence, a brief recall of the basic topological definitions is in order.

A topological space is a couple 〈X,O〉, where X is a set and O ⊆ P(X) such that:
∅ ∈ O, X ∈ O, O is closed under arbitrary union, O is closed under finite intersection.
An element of O is called an open. A subset A of X is called closed if X −A is open.
The interior of a set A ⊆ X is the union of all open sets contained in A. The closure
of a set A ⊆ X is the intersection of all closed sets containing A.

To capture a considerable fragment of topological notions a multi-modal language
S4u interpreted on topological spaces (à la Tarski [30]) is used. A topological model
M = 〈X,O, ν〉 is a topological space 〈X,O〉 equipped with a valuation function
ν : P → P(X), where P is the set of proposition letters of the language.

The definition and interpretation of S4u follows that given in [3], which in turn
is a rewriting of the one in [10]. In [3] though, emphasis is given to the topological
expressivity of the language rather than the mereotopological implications. Every
formula of S4u represents a region. Two modalities are available. 2ϕ to be interpreted
as “interior of the region ϕ”, and Uϕ to be interpreted as “it is the case everywhere
that ϕ.” The truth definition can now be given. Consider a topological model M =
〈X,O, ν〉 and a point x ∈ X :

M,x |= p iff x ∈ ν(p)(with p ∈ P)
M,x |= ¬ϕ iff not M,x |= ϕ

M, x |= ϕ→ ψ iff not M,x |= ϕ or M,x |= ψ

M, x |= 2ϕ iff ∃o ∈ O : x ∈ o∧
∀y ∈ o : M, y |= ϕ

M, x |= 3ϕ iff ∀o ∈ O : x 6∈ o∨
∃y ∈ o : M, y |= ϕ

M, x |= Uϕ iff ∀y ∈ X : M, y |= ϕ

M, x |= Eϕ iff ∃y ∈ X, M, y |= ϕ

Since 2 is interpreted as interior and 3 (defined dually as 3ϕ↔ ¬2¬ϕ, for all ϕ) as

4 A Spatial Similarity Measure based on Games: Theory and Practice

closure, it is not a surprise that these modalities obey the following axioms:

2A→ A (T)
2A→ 22A (4)
2> (N)
2A ∧ 2B ↔ 2(A ∧B) (R)

(4) is idempotence, while (N) and (R) are immediately identifiable in the definition of
topological space. For the universal—existential modalities U and E (defined dually:
Eϕ↔ ¬U¬ϕ) the axioms are those of S5:

U(ϕ→ ψ) → (Uϕ→ Uψ) (K)
Uϕ→ ϕ (T)
Uϕ→ UUϕ (4)
ϕ→ UEϕ (B)

In addition, the following ‘connecting’ principle is part of the axioms:

3ϕ→ Eϕ (Con)

The axiomatization of 2 as interior is due to [30] and is generally known as S4 in
modal logics. Though, in the context of Kripke semantics one gives an equivalent
set of axioms to the one here provided. The axiomatization of the full S4u was first
introduced in [21], then by Bennett [10] with the topological interpretation for spatial
reasoning.

Before defining the similarity measure based on model comparison games for S4u,
we take a look at the mereotopological expressive power of the language. This to get
acquainted with the language and to get an intuition for what S4u can and what it
cannot express.

2.1 Expressivity

The language S4u is perfectly suited to express mereotopological concepts. The rela-
tion of parthood P(A, B) of a region A being inside the region B holds whenever it is
the case everywhere that A implies B:

P(A, B) := U(A→ B)

This captures exactly the set-inclusion relation of the models. As for connection C,
two regions A and B are connected if there exists a point where both A and B are
true:

C(A, B) := E(A ∧B)

From here it is immediate to define all the usual mereotopological predicates such
as proper part, tangential part, overlap, external connection, and so on. Notice that
the choice made in defining P and C is arbitrary. So, why not take a more restrictive
definition of parthood? Say, A is part of B whenever the closure of A is contained in
the interior of B?

P(A, B) := U(3A→ 2B)

3. WHEN ARE TWO SPATIAL PATTERNS THE SAME? 5

As this formula shows, S4u is expressive enough to capture also this definition of
parthood. In [15], the logical space of mereotopological theories is systematized.
Based on the intended interpretation of the connection predicate C, and the consequent
interpretation of P (and fusion operation), a type is assigned to mereotopological
theories. More precisely, a type is a triple τ = 〈i, j, k〉, where the first i refers to
the adopted definition of Ci, j to that of Pj and k to the sort of fusion. The index
i, referring to the connection predicate C, accounts for the different definition of
connection at the topological level. Using S4u one can repeat here the three types of
connection:

C1(A, B):= E(A ∧B)
C2(A, B):= E(A ∧3B) ∨ E(3A ∧B)
C3(A, B):= E(3A ∧3B)

Looking at previous mereotopological literature, one remarks that RCC uses a C3
definition, while the system proposed in [6] uses a C1. Similarly to connectedness, one
can distinguish the various types of parthood, again in terms of S4u:

P1(A, B):= U(A→ B)
P2(A, B):= U(A→ 3B)
P3(A, B):= U(3A→ 3B)

In [15], the definitions of the Ci are given directly in terms of topology, and the
definitions of Pj in terms of a first order language with the addition of a predicate
Ci. Finally, a general fusion φk is defined in terms of a first order language with a Ci
predicate. Fusion operations are like algebraic operations on regions, such as adding
two regions (product), or subtracting two regions. One cannot repeat the general
definition given in [15] at the S4u level. Though, one can show that various instances
of fusion operations are expressible in S4u. For example, the product A×k B:

A×1 B:=A ∧B
A×2 B:= (3A ∧B) ∨ (A ∧3B)
A×3 B:= (3A ∧3B)

The above discussion has shown that S4u is a general language for mereotopology.
All the different types τ = 〈i, j, k〉 of mereotopological theories are expressible within
S4u.

3 When are two spatial patterns the same?

One is now ready to address questions such as: When are two spatial patterns the
same? or When is a pattern a sub-pattern of another one? More formally, one wants
to define a notion of equivalence adequate for S4u and the topological models. In
first-order logic the notion of ‘partial isomorphism’ is the building block of model
equivalence. Since S4u is multi-modal language, one resorts to bisimulation, which
is the modal analogue of partial isomorphism. Bisimulations compare models in a
structured sense, ‘just enough’ to ensure the truth of the same modal formulas [32, 22].

6 A Spatial Similarity Measure based on Games: Theory and Practice

Definition 3.1 (Topological bisimulation) Given two topological models 〈X,O,
ν〉, 〈X ′, O′, ν′〉, a total topological bisimulation is a non-empty relation � ⊆ X ×X ′

defined for all x ∈ X and for all x′ ∈ X ′ such that if x� x′:

(base): x ∈ ν(p) iff x′ ∈ ν′(p) (for any proposition p)

(forth condition): if x ∈ o ∈ O then
∃o′ ∈ O′ : x′ ∈ o′ and ∀y′ ∈ o′ : ∃y ∈ o : y � y′

(back condition): if x′ ∈ o′ ∈ O′ then
∃o ∈ O : x ∈ o and ∀y ∈ o : ∃y′ ∈ o′ : y � y′

If only conditions (i) and (ii) hold, the second model simulates the first one.

The notion of bisimulation is used to answer questions of ‘sameness’ of models, while
simulation will serve the purpose of identifying sub-patterns. Though, one must show
that the above definition is adequate with respect to the mereotopological framework
provided in this paper.

Theorem 3.2 Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be two models, x ∈ X , and
x′ ∈ X ′ bisimilar points. Then, for any modal formula ϕ in S4u, M,x |= ϕ iff
M ′, x′ |= ϕ.

Theorem 3.3 Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν′〉 be two models with finite O, O′,
x ∈ X , and x′ ∈ X ′ such that for every ϕ in S4u, M,x |= ϕ iff M ′, x′ |= ϕ. Then
there exists a total bisimulation between M and M ′ connecting x and x′.

In words, extended modal formulas are invariant under total bisimulations, while finite
modally equivalent models are totally bisimilar. One may notice, that in Theorem 3.3
a finiteness restriction is posed on the open sets. This will not surprise the modal
logician, since the same kind of restriction holds for Kripke semantics and does not
affect the proposed use for bisimulations in the mereotopological framework.

4 How different are two spatial patterns?

If topological bisimulation is satisfactory from the formal point of view, one needs
more to address qualitative spatial reasoning problems and computer vision issues. If
two models are not bisimilar, or one does not simulate the other, one must be able to
quantify the difference between the two models. Furthermore, this difference should
behave in a coherent manner across the class of all models. Informally, one needs to
answer questions like: How different are two spatial patterns?

To this end, we recall the game theoretic definition of topo-games [3], and then prove
the main theoretical result of this paper, namely the fact that topo-games induce a
distance on the space of all topological models for S4u. First, we give the definition
and the theorem that ties together the topo-games, S4u and topological models.

Definition 4.1 (topo-game) Consider two topological models 〈X,O, ν〉, 〈X ′, O′, ν′〉
and a natural number n. A topo-game of length n, notation TG(X,X ′, n), consists
of n rounds between two players, Spoiler and Duplicator, who move alternatively.

4. HOW DIFFERENT ARE TWO SPATIAL PATTERNS? 7

Spoiler is granted the first move and always chooses which type of round to engage.
The two sorts of rounds are as follows:

global

(i) Spoiler chooses a model Xs and picks a point
x̄s anywhere in Xs

(ii) Duplicator chooses a point x̄d anywhere in t he
other model Xd

local

(i) Spoiler chooses a model Xs and an open os

containing the current point xs of that model
(ii) Duplicator chooses an open od in the other

model Xd containing its current point xd

(iii) Spoiler picks a point x̄d in Duplicator’s open
od in the Xd model

(iv) Duplicator replies by picking a point x̄s in
Spoiler’s open os in Xs

The points x̄s and x̄d become the new current points. A game always starts by a
global round. By this succession of actions, two sequences are built: {x1, x2, . . . xn}
and {x′1, x′2, . . . x′n}. After n rounds, if xi and x′i (with i ∈ [1, n]) satisfy the same
propositional atoms, Duplicator wins, otherwise, Spoiler wins. A winning strategy
(w.s.) for Duplicator is a function from any sequence of moves by Spoiler to appro-
priate responses which always ends in a win for him. Spoiler’s winning strategy is
defined dually.

The multi-modal rank of a S4u formula is the maximum number of nested modal
operators appearing in it (i.e. 2, 3, U and E modalities). The following adequacy of
the games with respect to the mereotopological language holds.

Theorem 4.2 (Adequacy) Duplicator has a winning strategy for n rounds in TG(X,
X ′, n) iff X and X ′ satisfy the same formulas of multi-modal rank at most n.

Various examples of plays and a discussion of winning strategies can be found in [3].2

The interesting result is that of having a game theoretic tool to compare topological
models. Given any two models, they can be played upon. If Spoiler has a winning
strategy in a certain number of rounds, then the two models are different up to
a certain degree. The degree is exactly the minimal number of rounds needed by
Spoiler to win. On the other hand, one knows (see [3]) that if Spoiler has no w.s.
in any number of rounds, and therefore Duplicator has in all games, including the
infinite round game, then the two models are bisimilar.

A way of comparing any two given models is not of great use by itself. It is essential
instead to have some kind of measure. It turns out that topo-games can be used to
define a distance measure.

2For example, one may find interesting that a normal form is available for the language (one for which every formula

has one universal modal operator ranging over boolean combinations of local modal operators). The normal form

is tied to the winning strategies of either player.

8 A Spatial Similarity Measure based on Games: Theory and Practice

tmd=
spw

1 = 1
3

tmd=
spw

1 = 1
2

tmd=
spw

1 = 1
2 ϕ ϕ()E

φEφE

Fig. 1: On the left, three models and their relative distance. On the right, the
distinguishing formulas.

Definition 4.3 (isosceles topo-distance) Consider the space of all topological mod-
els T . Spoiler’s shortest possible win is the function spw : T ×T → IN ∪{∞}, defined
as:

spw(X1, X2) =

n if Spoiler has a winning strategy in TG(X1, X2, n),
but not in TG(X1, X2, n− 1)

∞ if Spoiler does not have a winning strategy in
TG(X1, X2,∞)

The isosceles topo-model distance (topo-distance, for short) between X1 and X2 is the
function tmd : T × T → [0, 1] defined as:

tmd(X1, X2) =
1

spw(X1, X2)

The distance was named ‘isosceles’ since it satisfies the triangular property in a pe-
culiar manner. Given three models, two of the distances among them (two sides of
the triangle) are always the same and the remaining distance (the other side of the
triangle) is smaller or equal. On the left of Figure 1, three models are displayed: a
spoon, a fork and a plate. Think these cutlery objects as subsets of a dense space,
such as the real plane, which evaluate to φ, while the background of the items eval-
uates to ¬φ. The isosceles topo-distance is displayed on the left next to the arrow
connecting two models. For instance, the distance between the fork and the spoon
is 1

2 since the minimum number of rounds that Spoiler needs to win the game is 2.

5. COMPUTING SIMILARITIES 9

To see this, consider the formula E2φ, which is true on the spoon (there exists an
interior point of the region φ associated with the spoon) but not on the fork (which
has no interior points). On the right of the figure, the formulas used by spoiler to
win the three games between the fork, the spoon and the plate are shown. Next the
proof that tmd is really a distance, in particular the triangular property, exemplified
in Figure 1, is always satisfied by any three topological models.

Theorem 4.4 (isosceles topo-model distance) tmd is a distance measure on the
space of all topological models.

The nature of the isosceles topo-distance triggers a question. Why, given three spatial
models, the distance between two couples of them is always the same?

First an example, consider a spoon, a chop-stick and a sculpture by Henry Moore.
It is immediate to distinguish the Moore’s sculpture from the spoon and from the
chop-stick. The distance between them is high and the same. On the other hand,
the spoon and the chop-stick look much more similar, thus, their distance is much
smaller. Mereotopologically, it may even be impossible to distinguish them, i.e., the
distance may be null.

In fact one is dealing with models of a qualitative spatial reasoning language of
mereotopology. Given three models, via the isosceles topo-distance, one can easily
distinguish the very different patterns. In some sense they are far apart as if they
were belonging to different equivalence classes. Then, to distinguish the remaining
two can only be harder, or equivalently, the distance can only be smaller.

5 Computing similarities

The fundamental step to move from theory to practice has been taken when shifting
from model comparison games to a distance. To complete the journey towards prac-
tice one needs to identify ways of effectively compute the distance in cases actually
occurring in real life domains. We do not have an answer to the general question
of whether the topo-distance is computable for any two topological models or not.
Though, by restricting to a specific class of topological models widely used in real life
applications, we can show the topo-distance to be computable when one makes an
ontological commitment. The commitment consists of considering topological spaces
made of polygons. This is common practice in various application domains such as
geographical information systems (GIS), in many branches of image retrieval and of
computer vision, in robot planning, just to mention the most common.

Consider the real plane IR2, any line in IR2 cuts it into two half-planes. We call a
half-plane closed if it includes the cutting line, open otherwise.

Definition 5.1 (region) A polygon is the intersection of finitely many open or closed
half-planes. An atomic region of IR2 is the union of finitely many polygons.

An atomic region is denoted by one propositional letter. More in general, any set of
atomic regions, simply called region, is denoted by a S4u formula. The polygons of
the plane equipped with a valuation function, denoted by MIR2 , are in full rights a
topological model as defined in Section 2, a basic topological fact. A similar definition
of region can be found in [24]. In that article Pratt and Lemon also provide a collection
of fundamental results regarding the plane, polygonal ontology just defined (actually
one in which the regions are open regular).

10 A Spatial Similarity Measure based on Games: Theory and Practice

From the model theoretic point of view, the advantage of working with MIR2 is
that we can prove a logical finiteness result and thus give a terminating algorithm to
compute the topo-distance. The preliminary step is thus that of proving a finiteness
lemma for S4u over MIR2 models.3

Lemma 5.2 (finiteness) There are only finitely many modally definable subsets of
a finite set of regions {ri|ri is an atomic region}.
Here is a proof sketch.4 We work by enumerating cases, i.e., considering boolean

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

Er E2r
E(¬r ∧32r),
if open
E(r ∧32¬r),
if closed ���

���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

E¬r E2¬r
E(r ∧32¬r),
if open
E(¬r ∧32r),
if closed

E(r ∧23¬r))
a spike

(a) (¬a) (b)

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

E(¬r ∧ 23r))
a crack

���
���
���
���
���
���

���
���
���
���
���
���

same as (a)
and (b)

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

same as (¬a)
and (¬b)

(¬b) (c) (¬c)

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������

������
������
������ E(32r ∧3(r ∧23¬r))

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������

������
������
������

������ E(32¬r∧3(¬r∧23r))

(d) (¬d)

Fig. 2. Basic formulas defined by one region.

combinations of planes, adding to an ‘empty’ space one half-plane at the time, first
to build one region r, and then to build a finite set of regions. The goal is to show
that only finitely many possibilities exist. We begin by placing a half plane denoted
by r on an empty bidimensional space, Figure 2.a. Let us follow what happens to
points in the space from left to right. On the left, points satisfy the formula E(r∧2r)
and its subformulas Er and E2r. This is true until we reach the frontier point of
the half-plane. Either E(¬r ∧32r) or E(r ∧32¬r) are true depending on whether
the half-plane is open or closed, respectively. Once the frontier has been passed to
the right, the points satisfy E(¬r∧2¬r) and its subformulas E¬r and E2¬r, better
seen in Figure 2.¬a. In fact, if we consider negation in the formulas the role of r and
¬r switch. Consider now a second plane in the picture:

• Intersection: the intersection may be empty (no new formula), may be a polygon
with two sides and vertices (no new formula, the same situation as with one
polygon), or it may be a line, the case of two closed polygons that share the side
(in this last case depicted in Figure 2.b—spike—we have a new formula, namely,
E(r ∧23¬r)).

3Of course, in general this is not true. There are infinitely many non equivalent S4u formulas and one can identify

appropriate Kripke models to show this. See, e.g., [11].

4The finiteness lemma is the extension to two dimensions of the theorem for serial sets of [4]. In two-dimensions

one has 8 non-equivalent formulas rather than 6, as in the one dimensional case proved in [4].

5. COMPUTING SIMILARITIES 11

• Union: the union may be a polygon with either one or two sides (no new formula),
two separated polygons (no new formula), or two open polygons sharing the open
side (this last case depicted in Figure 2.¬b—crack—is like the spike, one inverts
the roles r and ¬r in the formula: E(¬r ∧ 23r)).

Finally, consider combining cases (a) and (b). By union, we get Figure 2.a, 2.c,
2.d. The only situation bringing new formulas is the latter. In particular, the point
where the line intersects the plane satisfies the formula: E(32r ∧3(r ∧23¬r)). By
intersection, we get a segment, or the empty space, thus, no new formula.

The four basic configurations just identified yield no new configuration from the
S4u point of view. To see this, consider the boolean combinations of the above
configurations. We begin by negation (complement):

¬ ���
���
���
���
���

���
���
���
���
���

��
��
��
��

a b ���
���
���
���
���

���
���
���
���
���

c ���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

d

���
���
���
���
���

���
���
���
���
���

��
��
��
�� ¬a ���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

¬b ��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

¬a, ¬b ���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����
������ ¬d

Union straightforwardly follows (where a stands for both a and ¬a, as both configu-
rations always appear together):

⋃
���
���
���
���
���

���
���
���
���
���

��
��
��
��

a b ���
���
���
���
���

���
���
���
���
���

c ���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

d

���
���
���
���
���

���
���
���
���
���

��
��
��
��

a a, ¬b, ¬d a, c, d a, ¬b, c, d, ¬d a, ¬b, d, ¬d

b a, c, d b c, d d

���
���
���
���
���

���
���
���
���
���

c a, ¬b, c, d, ¬d c, d a, ¬b, c, d, ¬d a, ¬b, c, d, ¬d

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

d a, ¬b, d, ¬d d a, ¬b, c, d, ¬d a, ¬b, d, ¬d

The table for intersection follows, with the proviso that the combination of the two
regions can always be empty (not reported in the table) and again a and ¬a are
represented simply by a:

⋂
���
���
���
���
���

���
���
���
���
���

��
��
��
��

a b ���
���
���
���
���

���
���
���
���
���

c ���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

d

���
���
���
���
���

���
���
���
���
���

��
��
��
��

a a, b, c, d b a, b, c a, b, d

b b b b b

���
���
���
���
���

���
���
���
���
���

c a, b, c b a, b, c, d a, b, c, d

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

d a, b, d b a, b, c, d a, b, c, d

We call topo-vector associated with the region r, notation ~r, an ordered sequence
of ten boolean values. The values represent whether the region r satisfies or not the
ten formulas

{Er,E¬r, E2r, E2¬r, E(¬r ∧32r), E(r ∧32¬r), E(r ∧23¬r)), E(¬r ∧23r)),
E(32r ∧3(r ∧ 23¬r)), E(32¬r ∧3(¬r ∧ 23r))}.

12 A Spatial Similarity Measure based on Games: Theory and Practice

The ten formulas are those identified in Figure 2 which we have shown to be the only
one definable by boolean combinations of planes denoting the same one region r. For
example, the topo-vector associated with a plate—a closed square r in the plane—is
{true, true, true, true, false, true, false, false, false, false}.

Adding half-planes with different denotations r2, r3, . . . increases the number of
defined formulas. The definition of topo-vector is extended to an entire MIR2 model:

{E
∧
i

[¬]ri, E
∧
i

2[¬]ri, E(
∧
i

[¬]+ri ∧
∧
i

32[¬]∗ri), E(
∧
i

[¬]+ri ∧
∧
i

23[¬]∗ri),

E(
∧
i

32[¬]+ri ∧3(
∧
i

[¬]+ri ∧
∧
i

23[¬]∗ri))},

where [] denotes an option and if the option []+ is used then the option []∗ is not and
vice-versa. The topo-vector is built such that the modal rank of the formulas is not
decreasing going from the positions with lower index to those with higher. The size of
such a vector is 5 · 2i where i is the number of denoted regions of the model. The fact
that the size of the topo-vector grows exponentially with the number of regions might
seem a serious drawback. Though, as we shall show in a moment, the topo-vector
stores all the information relevant for S4u about the model. Furthermore, the size of
a topo-vector is most often considerably smaller than that of a topological model. In
fact, a topo-vector is of exponential size in the number of regions, while a topological
model is of exponential size in the number of points of the space because of the set of
opens. As a final argument, one should add that in practical situations the number
of regions is always much smaller than the number of points of the space.

We are now in a position to devise an algorithm to compute the topo-distance
between two topological models. The algorithm works by first computing the asso-
ciated topo-vectors and then comparing them. By the comparison it is possible to
establish which formulas differentiate the two models and therefore the distance be-
tween the two models. Here is the general algorithm (in pseudo-code) to compute the
topo-distance between two topological models M1 and M2:

topo-distance(M1, M2)

~v1 = topo-vector (M1)

~v2 = topo-vector (M2)

align ~v1 and ~v2

loop on ~v1 ~v2 with index i

if ~v1(i) 6= ~v2(i)
return 1

modal rank(~v1(i))

return 0

The idea is of retrieving the topo-vectors associated with the two input models and
then looping over their elements. The inequality check can also be thought of as a xor,
since the elements of the array are booleans. If the condition is never satisfied, the
two topo-vectors are identical, the two-models are topo-bisimilar and thus the topo-
distance is null. The align command makes the topo-vectors of the same length
and aligns the formulas of the two, i.e., such that to the same index in the vector

5. COMPUTING SIMILARITIES 13

��
��
��

��
��
��

1
2

3

4 5

6

7 8

9
r

r

q

Fig. 3. Computing the topo-vector on a simple model.

corresponds the same formula. If a topo-vector contains a formula that the other one
does not, the entry is added to the vector missing it with a false value. To complete
the description of the algorithm, we provide the function to compute the topo-vector
associated with an MIR2 model:

topo-vector(M)

~v = initialized to all false values

loop on regions r of M with index i

loop on atomic regions a of r(i) with index j

loop on vertices v of a(j) with index k

update ~v with the point v(k)
if v(k) is not free

loop on intersections x of a(j) with all

regions of M with index l
update ~v with the point x(l)

return ~v

If a point v(k) of an atomic region a(j) is contained in any polygon different from a(j)
and it is not contained in any other region, then the condition v(k) is not free is
satisfied. Standard computational geometry algorithms exist for this task, [16]. When
the “update ~v with the point p” function is called, one checks in which case p is
(as shown after Lemma 5.2), then one considers the position of the corresponding
topo-vector and puts in a true value. An obvious optimization to the algorithm is to
avoid checking points for which all the associated formulas are already true. Consider
the simple model of Figure 3 composed of two closed regions r and q. Since there are
two regions, the topo-vector will be of size 5 · 22 = 20 elements: {E(r∧ q), E(r∧¬q),
. . .E(32¬r ∧32¬p ∧3(¬r ∧¬q ∧23r ∧23q)))}. After initialization, the region r
is considered and one starts looping on the vertices of its polygons, first the point 1.
The point is free, it is the vertex of a full polygon (not a segment) and therefore the
topo-vector is updated directly in the positions corresponing to Er∧¬q, E2r∧2¬q,
Er ∧ ¬q ∧ 2r ∧ 2¬q, Er ∧ ¬q ∧ 32r ∧ 32q. The points 2 and 3 would update the
values for the same formula and are not considered. The point 4 falls inside the first

14 A Spatial Similarity Measure based on Games: Theory and Practice

polygon of r, the topo-vector does not need update. Intersections are then computed
and the point 5 is found. The point needs to update the vector for the formula
E32r ∧32¬q ∧3(r ∧ ¬q ∧ 23¬r ∧ 23¬q). Finally, the point 6 is considered and
the point needs to update the formula E(r ∧ ¬q ∧ 32¬r ∧ 32¬q). The algorithm
proceeds by considering the second region, q and its vertices 7, 8, and 9. The three
vertices all fall inside the region r and provide for the satisfaction of the formulas
Er ∧ q, E2r ∧ 2q, . . .

Lemma 5.3 (termination) The topo-distance algorithm terminates.

The property is easily shown by noticing that a segment (a side of a polygon) can
have at most one intersection with any other segment, that the number of polygons
forming a region of MIR2 is finite, and that the number of regions of MIR2 is finite.
Putting this result together with Lemma 5.2 one gets the hoped decidability result
for polygonal topological models.

Theorem 5.4 (decidability of the topo-distance) In the case of polygonal topo-
logical models MIR2 over the real plane, the problem of computing the topo-distance
among any two models is decidable.

Given the definition of topo-distance, the fact that two models have a null topo-
distance implies that in the topo-game Duplicator has a winning strategy in the
infinite round game. In the case of MIR2 , Theorem 5.4 implies that the two models
are topo-bisimilar. Note that, in general, this is not the case: Duplicator may have
a winning strategy in an infinite model comparison game adequate for some modal
language and the models need not be bisimilar [9].

Corollary 5.5 (decidability of topo-bisimulations) In the case of polygonal topo-
logical models over the real plane, the problem of identifying whether two models are
topo-bisimilar or not is decidable.

6 Conclusions

We have followed the line from theory to practice in a context of spatial reasoning.
First, we have considered a general mereotoplogical framework, placing the language
S4u where it belongs: S4u is a general mereotopological language not committed to
any specific definition of connection, but rather with high topological discriminating
power. We addressed issues of model equivalence and especially of model comparison,
thus, looking at mereotopology from a new angle. Defining a distance that encodes
the mereotopological difference between spatial models has important theoretical and
application implications, as we have shown. Our journey has ended by illustrating
the actual decidability of the devised similarity measure for a practically interesting
class of models.

The theoretical framework proposed is much more general than what we have shown
here. We were interested in a mereotopological framework and have therefore used
the language S4u interpreted on topological models, but an isosceles distance can be
used for any modal language equipped with negation and for which one has adequate
notions of model comparison games and bisimulation. Even the restriction to modal
logic is not necessary, one can think of first-order logic, of the usual Ehrenfeucht-
Fräıssé games, of elementary equivalence in place of bisimulation, and an isosceles

6. CONCLUSIONS 15

distance is then definable. The decidabilty result for the distance is the only thing
that does not necessarily extend, rather one has to consider the class of models and
the logic case by case. Of particular importance is then how the adequate topological
games are defined.

We would like to stress the fact that the use of model comparison games presented
in this paper is novel. Model comparison games have been used only to compare two
given models, but the issue of setting a distance among a whole class of models has not
been previously addressed. The technique employed in Theorem 4.4 for the language
S4u is, as we have just mentioned, much more general. A question interesting per se,
but out of the scope of the present paper, is: which is the class of games (over which
languages) for which a notion of isosceles distance holds? We belive the class of such
languages and model comparison games to be quite vast.

Having implemented a system based on the above framewok is also an important
step in the presented research. Experimentation is essential to asses applicability,
but some preliminar considerations are possible. We have noticed that the prototype
is very sensible to the labeling of segmented areas of images, i.e., to the assignment
of propositional letters to regions. We have also noticed that the mereotopological
expressive power appears to enhance the quality of retrieval and indexing over pure
textual searches, but the expressive power of S4u is still too limited. Notions of
qualitative orientation, shape or geometry appear to be important, especially when
the user expresses his desires in the form of an image query or of a sketch.

The generality of the framework described in the paper allows for optimism about
future developments. Once one has identified an appropriate language of, say, qual-
itative shape with adequate model comparison games, a newer version of IRIS can
be built. We will be researching in two directions. On the one hand, qualitative
notions of shape are expressible via mathematical morpholoy, which in turn is closely
related to modal logics [12]. On the other hand, axiomatizations of the notions of
betweenness (also originated by Tarski in [31]) may provide for qualitative notions of
geometry. Again, one can stay on the ground of modal logics and one can look at
languages for incidence geometries. In the approach, one distinguishes the sorts of
elements that populate space and considers the incidence relation between elements
of the different sorts (see [8, 7, 33]).

All in all, there is much more to model-comparison games than simply laying down
two peculiar models and start playing on them. We have looked at spatial reasoning
and at image similarity, but many more roads are viable.

Aknowledgements

The author is thankful to Johan van Benthem for fruitful discussions on the topic, to
Kees Doets for feedback on a previous version of the proof of Theorem 4.4, and to
Michael Zakharyaschev for helpful discussion. This work was supported in part by
CNR grants 203.15.10 and 203.7.27.

References

[1] M. Aiello. Topo-distance: Measuring the Difference between Spatial Patterns. In M. Ojeda-
Aciego, I. P. de Guzmán, G. Brewka, and L. Moniz Pereira, editors, Logics in Artificial Intelli-

16 A Spatial Similarity Measure based on Games: Theory and Practice

gence (JELIA 2000), LNAI, 1919, pages 73–86. Springer, 2000.

[2] M. Aiello. Computing spatial similarity by games. In F. Esposito, editor, AI*IA 2001: Advances
in Artificial Intelligence, LNAI, 2175, pages 99–110. Springer, 2001.

[3] M. Aiello and J. van Benthem. Logical Patterns in Space. In D. Barker-Plummer, D. Beaver,
J. van Benthem, and P. Scotto di Luzio, editors, Logic Unleashed: Language, Diagrams and
Computation, Stanford, 2002. CSLI. To appear.

[4] M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about Space: the Modal Way.
Manuscirpt, 2001.

[5] J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26:832–843, 1983.

[6] N. Asher and L. Vieu. Toward a Geometry of Common Sense: a semantics and a complete
axiomatization of mereotopology. In IJCAI95, pages 846–852. International Joint Conference
on Artificial Itelligence, 1995.

[7] Ph. Balbiani. The modal multilogic of geometry. Journal of Applied Non-Classical Logics,
8:259–281, 1998.

[8] Ph. Balbiani, L. Fariñas del Cerro, T. Tinchev, and D. Vakarelov. Modal logics for incidence
geometries. Journal of Logic and Computation, 7:59–78, 1997.

[9] J. Barwise and L. Moss. Vicious Circles. CSLI, 1996.

[10] B. Bennett. Modal Logics for Qualitative Spatial Reasoning. Bulletin of the IGPL, 3:1 – 22,
1995.

[11] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press, 2001.

[12] I. Bloch. Using Mathematical Morphology Operators as Modal Operators for Spatial Reasoning.
In ECAI 2000, Workshop on Spatio-Temporal Reasoning, pages 73–79, 2000.

[13] R. Casati and A. Varzi. Parts and Places. MIT Press, 1999.

[14] S.K. Chang and S.H. Liu. Picture indexing and abstraxtion techniques for pictorial databases.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(7):475–484, 1984.

[15] A. G. Cohn and A. Varzi. Connection Relations in Mereotopology. In H. Prade, editor, Proc.
13th European Conf. on AI (ECAI98), pages 150–154. John Wiley, 1998.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2000. Second edition.

[17] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, 1999.

[18] K. Doets. Basic Model Theory. CSLI Publications, Stanford, 1996.

[19] M. Egenhofer. Query processing in spatial-query-by-sketch. Journal of Visual Languages and
Computing, 8(4):403–424, 1997.

[20] W. Frakes and R. Baeza-Yates, editors. Information Retrieval, Data Structures and Algorithms.
Prentice Hall, 1992.

[21] V. Goranko and S. Passy. Using the universal modality: gains and questions. Journal of Logic
and Computation, 2:5–30, 1992.

[22] D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the 5th GI
Conference, pages 167–183, Berlin, 1981. Springer Verlag.

[23] E. Petrakis, C. Faloutsos, and L. King-Ip. ImageMap: An Image Indexing Method Based on
Spatial Similarity. IEEE Transactions on Knowledge and Data Engineering, 2001. To appear.

[24] I. Pratt and O. Lemon. Ontologies for Plane, Polygonal Mereotopology. Notre Dame Journal
of Formal Logic, 38(2):225–245, 1997.

[25] D. Randell, Z. Cui, and A. G. Cohn. A Spatial Logic Based on Regions and Connection. In
Proc. of Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’92), pages
165–176. San Mateo, 1992.

[26] J. Renz and B. Nebel. On the Complexity of Qualitative Spatial Reasoning: A Maximal
Tractable Fragment of the Region Connection Calculus. Artificial Intelligence, 108(1-2):69–123,
1999.

[27] S. Santini and J. Ramesh. Similarity measures. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(9):871–883, 1999.

[28] V. Shehtman. “Everywhere” and “Here”. Journal of Applied Non-Classical Logics, 9(2-3):369–
379, 1999.

A. PROOFS OF THEOREMS 17

[29] H. Tagare, F. Vos, C. Jaffe, and J. Duncan. Arrangement: A spatial relation between part
for evaluating similarity of tomographic section. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(9):880–893, 1995.

[30] A. Tarski. Der Aussagenkalkül und die Topologie. Fund. Math., 31:103–134, 1938.

[31] A. Tarski. What is Elementary Geometry? In L. Henkin and P. Suppes and A. Tarski, editor,
The Axiomatic Method, with Special Reference to Geometry ad Physics, pages 16–29. North-
Holland, 1959.

[32] J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.

[33] Y. Venema. Points, Lines and Diamonds: a Two-Sorted Modal Logic for Projective Planes.
Journal of Logic and Computation, 9(5):601–621, 1999.

[34] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishing, 2nd edition, 1999.

[35] F. Wolter and M. Zakharayaschev. Spatio-temporal representation and reasoning based on
RCC-8. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Proceedings of the Seventh
International Conference on Principles of Knowledge Representation and Reasoning (KR2000),
pages 3–14, 2000.

A Proofs of Theorems

Proof of Theorem 3.2 on page 6

Induction on ϕ. The case of a proposition letter p is the first condition on �. As for conjunction,
M,x |= ϕ∧ψ is equivalent by the truth definition to M,x |= ϕ and M,x |= ψ, which by the induction
hypothesis is equivalent to M ′, x′ |= ϕ and M ′, x′ |= ψ, which by the truth definition amounts to
M ′, x′ |= ϕ ∧ ψ. The other boolean cases are similar. For the modal case, we do one direction.
First the ‘local’ modal operators 2 and 3: If M,x |= 2ϕ, then by the truth definition we have that
∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M, y |= ϕ. By the forth condition, corresponding to o, there must exist

an o′ ∈ O′ such that ∀y′ ∈ o′ ∃y ∈ o y � y′. By the induction hypothesis applied to y and y′ with
respect to ϕ, then ∀y′ ∈ o′ : M ′, y′ |= ϕ. By the truth definition of the modal operator we have
M ′, x′ |= 2ϕ. Using the back condition one proves the other direction likewise. Now the ‘global’
modal operators U and E: If M,x |= Eϕ, then by the truth definition we have that ∃y M, y |= ϕ.
The point x must be in the open set X (the whole space). By the forth condition, we know that
there must be a corresponding open set o′ in X′. Though, we need a little bit more, therefore we
show next that X′ itself is one of such o′.

Fact A.1 If the topological models 〈X,O, ν〉 and 〈X′, O′, ν′〉 are totally topologically bisimilar, a
special instance of the forth condition holds (similarily for the back condition):

if x ∈ X ∈ O then ∃X′ ∈ O′ : x′ ∈ X′ and ∀y′ ∈ X′ : ∃y ∈ X : y � y′

In general, if we instantiate the forth condition on the whole space X, we do not know which open
set o′ will correspond on 〈X′, O′, ν′〉:

if x ∈ X ∈ O then ∃o′ ∈ O′ : x′ ∈ o′ and ∀y′ ∈ o′ : ∃y ∈ X : y � y′

Obviously, o′ ⊆ X′. Ab absurdum, o′ 6= X′ for all o′ as just defined by the forth condition. Thus,
there must exist an element p′ of X′ that belongs to none of the sets o′. Two cases are now possible.
Either there exists a p ∈ X such that p � p′ or it does not exist. In both cases one reaches a
contradiction. If it exists, then X′ is an o′ open set. If it does not, then the two models are not
totally topologically bisimilar.

We can now proceed in the original proof. By the forth condition and the above fact, corresponding
to X there is the open whole space X′ such that ∀z ∈ X′ ∃z ∈ X z � z′. By the induction
hypothesis applied to z and z′ with respect to ϕ, ∀z′ ∈ X′ : M ′, z′ |= ϕ. One of such z is the y of
the truth definition for Eϕ, therefore M ′, y′ |= ϕ. By the truth definition, we have M ′, x′ |= Eϕ.
Using the back condition one proves the other direction likewise.

18 A Spatial Similarity Measure based on Games: Theory and Practice

Proof of Theorem 3.3 on page 6

To get a bisimulation between the two finite models, we stipulate that u� u′ if and only if u and u′
satisfy the same modal formulas. The atomic preservation condition for a bisimulation holds since
the modal ϕ include all proposition letters. We now prove the forth condition. Suppose that u� u′
where u ∈ o. We must find an open o′ such that u′ ∈ o′ and ∀y′ ∈ o′∃y ∈ o : y � y′. Now, suppose
there is no such o′. Then for every o′ containing x′ ∃y′ ∈ o′ : ∀y ∈ o : ∃ϕy : y 6|= ϕy and y′ |= ϕy .
In words, every open o′ contains a point y′ with no modally equivalent point in o. Taking the finite
conjunction of all formulas ϕy , we get a formula Φo′ such that y′ |= Φo′ and ¬Φo′ is true everywhere
in o. Slightly abusing notation, we write o |= ¬Φo′ . This line of reasoning holds for any open o′
containing x′ as chosen. Therefore, there exists a collection of formulas ¬Φo′ for which o |= V

o′
¬Φo′ .

Since x ∈ o, by the truth definition we have x |= 2
V
o′
¬Φo′ . By the fact that x and x′ satisfy the same

modal formulas, it follows that x′ |= 2
V
o′
¬Φo′ . But then, there exists an open o∗ (with x′ ∈ o∗) such

that o∗ |= V
o′
¬Φo′ . Since o∗ is an open containing x′, is one of the o′, i.e. o∗ |= ¬Φo∗ . But we had

supposed that for all opens o′ there was a point y′ |= Φo′ , so in particular the y′ of o∗ satisfies Φo∗ .
We have thus reached a contradiction: which shows that some appropriate open o′ must exist. The
back clause is proved analogously.

Proof of Theorem 4.2 on page 7

The left to right direction is proven by induction on the length n of the game TG(X,X′, n). If n = 0
and Duplicator has a winning strategy, this means that X and X′ satisfy the same propositional
letters, hence the same boolean combinations of propositional letters, i.e., the same modal formulas
of modal rank 0. Now for the inductive step. Suppose that Duplicator has a winning strategy σ
in TG(X,X′, n). We want to show that X,x |= ϕ iff X′, x′ |= ϕ when the modal rank of ϕ is n.
By simple syntactic inspection, ϕ must be a boolean combination of formulas of the form 2ψ or
Uψ where ψ has modal rank less or equal to n − 1. Thus, it suffices to prove that X |= 2ψ iff
X′ |= 2ψ and that X |= Uψ iff X′ |= Uψ. Without loss of generality, let us consider the first
model. Suppose that X |= 2ψ. By the truth definition there exists an open o (with x ∈ o) such
that ∀u ∈ o : X, z |= ψ. Now, assume that the n-round game starts with Spoiler choosing o in X.
Using the strategy σ, Duplicator can pick an open o′ such that x′ ∈ o′ and ∀u′ ∈ o′ : X, u′ |= ψ.
Now Spoiler can pick any point u′ in o′. Duplicator can use the information in σ to respond with
a point u ∈ oBox, concluding the first round, so that the remaining strategy σ′ is still winning for
Duplicator in TG(X,X′, n− 1). By the inductive hypothesis, the fact that X, u |= ψ (where ψ has
modal rank n − 1) implies that X′, x′ |= ψ. Thus we have shown that all u′ ∈ o′ satisfy ψ, and
hence X′, x′ |= 2ψ. The other direction is analogous. Suppose now that X |= Uψ. By the truth
definition for all x ∈ X such that X, x |= ψ. Ab absurdum, X¬ |= Uψ, hence X |= E¬ψ. By the
truth definition, ∃x′ ∈ X′ such that X′, x′ |= ¬ψ. Spoiler can choose the x′ point as his first move.
Duplicator’s choice on X is necessarily a point x such that X, x |= ψ, hence Duplicator cannot win
the game TG(X,X′, n−1), contradicting the induction hypothesis. The other direction is analogous.

The right to left direction is again proven by induction on n. If n = 0, then X and X′ satisfy
the same non-modal formulas. In particular, they satisfy the same atoms, which is winning for
Duplicator, by the definition of topological game. For the inductive step, without loss of generality,
let us assume that in the first (global) round of TG(X,X′, n) Spoiler chooses the point x. Consider
a generic open o containing x. Now, take the set {DESn−1(z) : z ∈ o}, where DESn−1(z) denotes
all the formulas up to modal rank n−1 satisfied at z. This set is not finite per se, but we can simply
prove the following.

Fact A.2 (Logical Finiteness) There are only finitely many formulas of modal depth k up to
logical equivalence.

Therefore, we can write one boolean formula to describe this open set o, namely
WV

DESn−1(z).
Since this is true for all z ∈ o, by the truth definition we have that X,x |= 2

WV
DESn−1(z) (a

formula of modal rank n). By hypothesis, x and x′ satisfy the same modal formulas of modal rank n,
so X′, x′ |= 2

WV
DESn−1(z). This last fact, together with the truth definition implies that there

A. PROOFS OF THEOREMS 19

exists an open o′ such that ∀z′ ∈ o′ : X′, z′ |= WVDESn−1(z). This is the open that Duplicator
must choose to reply to Spoiler’s move. Now Spoiler can pick any point u′ in o′. Such a point
satisfies at least one disjunct

V
DESn−1(z), and we let Duplicator respond with z ∈ o. As a result

of this first round, z, u′ satisfy the same modal formulas up to modal depth n − 1. Hence by the
inductive hypothesis, Duplicator has a winning strategy for TG(X,X′, n− 1). Putting this together
with our first instruction, we have a winning strategy for Duplicator in the n-round game.

Proof of Theorem 4.4 on page 9

tmd satisfies the three properties of distances; i.e., for all X1, X2 ∈ T :

(i) tmd(X1, X2) ≥ 0 and tmd(X1, X2) = 0 iff X1 = X2

(ii) tmd(X1, X2) = tmd(X2, X1)

(iii) tmd(X1, X2) + tmd(X2, X3) ≥ tmd(X1, X3)

As for (i), from the definition of topo-games it follows that the amount of rounds that can be played
is a positive quantity. Furthermore, the interpretation of X1 = X2 is that the spaces X1, X2 satisfy
the same modal formulas. If Spoiler does not have a w.s. in limn→∞ TG(X1, X2, n) then X1, X2

satisfy the same modal formulas. Thus, one correctly gets

tmd(X1 ,X2) = lim
n→∞

1

n
= 0.

Equation (ii) is immediate by noting that, for all X1, X2, TG(X1, X2, n) = TG(X2,X1, n).

As for (iii), the triangular property, consider any three models X1, X2, X3 and the three games
playable on them,

TG(X1, X2, n), TG(X2, X3, n), TG(X1,X3, n) (A.1)

Two cases are possible. Either Spoiler does not have a winning strategy in all three games (A.1) for
any amount of rounds, or he has a winning strategy in at least one of them.

If Spoiler does not have a winning strategy in all the games (A.1) for any number of rounds n,
then Duplicator has a winning strategy in all games (A.1). Therefore, the three models satisfy the
same modal formulas, spw →∞, and tmd→ 0. Trivially, the triangular property (iii) is satisfied.

Suppose Spoiler has a winning strategy in one of the games (A.1). Via Theorem 4.2 (adequacy),
one can shift the reasoning from games to formulas: there exists a modal formula γ of multi-modal
rank m such that Xi |= γ and Xj |= ¬γ. Without loss of generality, one can think of γ as being in
normal form:

γ =
_^

[¬]U(ϕS4) (A.2)

This last step is granted by the fact that every formula ϕ of S4u has an equivalent one in normal
form whose modal rank is equivalent or smaller to that of ϕ.5 Let γ∗ be the formula with minimal
multi-modal depth m∗ with the property: Xi |= γ∗ and Xj |= ¬γ∗. Now, the other model Xk

either satisfies γ∗ or its negation. Without loss of generality, Xk |= γ∗ and therefore Xj and Xk are
distinguished by a formula of depth m∗. Suppose Xj and Xk to be distinguished by a formula β of
multi-modal rank h < m∗: Xj |= β and Xk |= ¬β. By the minimality of m∗, one has that Xi |= β,
and hence, Xi and Xk can be distinguished at depth h. As this argument is symmetric, it shows
that either
• one model is at distance 1

m∗ from the other two models, which are at distance 1
l

(≤ 1
m∗), or

• one model is at distance 1
h

from the other two models, which are at distance 1
m∗ (≤ 1

h
) one from

the other.
It is a simple matter of algebraic manipulation to check that m∗, l and h,m∗ (as in the two cases
above), always satisfy the triangular inequality.

5In the proof, the availability of the normal form is not strictly necessary, but it gives a better impression of the

behavior of the language, [3].

20 A Spatial Similarity Measure based on Games: Theory and Practice

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

��
��
��
��

����
���
���
���

���
���
��� ����

��������

����������

Caption

Image data base

topological model

textual descritption

Images Semantic data

topo-distance vector

binary relationships matrix

vector of textual occurencies

Indexing data

Fig. 4: The conceptual organization of IRIS together with the indexing data struc-
tures.

B The IRIS prototype

The ultimate step toward practice of the spatial framework presented in the paper is the actual

implementation of the similarity measure in a prototype. The topo-distance is a building block of an
image retrieval system, named IRIS Image RetrIeval based on Spatial relationships, coded in Java
and enjoying a Swing interface (Figure 5).

The actual similarity measure is built in IRIS to both index and retrieve images on the basis of:
(i) The spatial intricacy of each region,

(ii) The binary spatial relationships between regions, and

(iii) The textual description accompanying the image.

Referring to Figure 4, one can get a glimpse of the conceptual organization of IRIS. A spatial model,
as defined in Section 2, and a textual description (central portion of the figure) are associated with
each image of the collection (on the left). Each topological model is represented by its topo-distance
vector, as built by the algorithm in Section 5 and by a matrix of binary relationships holding between
regions. Similarly, each textual description is indexed holding a representative textual vector of the
text (right portion of the figure). In Figure 5, a screen-shot from IRIS after querying a database of
about 50 images of men and cars is shown. On the top-right is the window for sketching queries. The
top-center window serves to write textual queries and to attach information to the sketched regions.
The bottom window shows the results of the query with the thumbnails of the retrieved images (left
to right are the most similar). Finally, the window on the top-left controls the session.

We remark again the importance of moving from games to a distance measure and of identifying the
topo-vectors for actually being able to implement the spatial framework. In particular, in IRIS once
an image is place in the data-base the topo-vector for its related topological model is computed, thus
off-line, and it is the only data structure actually used in the retrieval process. The representation is
quite compact both if compared with the topological model and with the image itself. In addition,
the availability of topo-vectors as indexing structures enables us to use a number of information
retrieval optimizations, [20].

In IRIS, the similarity measure is built of three components:

similarity(Iq , Ij) =
1

kn
(ktopo

u · dtopo(Iq , Ij) + kb
u · db(Iq , Ij) + ktext

u · dtext(Iq, Ij))

B. THE IRIS PROTOTYPE 21

Fig. 5. The result of querying a database of men and cars.

where Iq is the query image (equipped with its topological model and textual description), Ij is the
j-th image in the visual database, ktopo

u , kb
u, and ktext

u are user defined factors to specify the relative

importance of topological intricacy, binary relationships and text in the querying process, kn is a
normalizing factor, dtopo(Iq, Ij) is the topo-distance between Iq and Ij , db(Iq, Ij) and dtext(Iq , Ij)
are the distances for the binary spatial relationships and for the textual descriptions, respectively.

The entire Section 5 is concerned with the computation of dtopo(Iq , Ij). The topo-distance com-
ponent is simply:

dtopo(Iq, Ij) = topo-distance(t-vec(Iq), t-vec(Ij))

The second component db(Iq, Ij) of the similarity measure accounts for the binary spatial relation-
ships between objects. When an image is indexed, a matrix is built. This is a square matrix whose
indices range over the regions present in the model. The generic entry ei,j of the matrix represents
the spatial relationship between region i and region j and can be one of the following: disconnected,
externally connected, overlap, equal, tangential part, non-tangential part, and the inverses of the
last two (RCC8). Following [19], we define a topological distance using RCC8 in the following way.
Any two relations are at distance n if there is a path of length n in the graph in Figure 6 connecting
the two nodes representing the relations. Our distance is slightly different from that in [19] since we
use a modification of its original graph, though the underlying idea is the same. In the similarity
measure, one compares matrices b(M1,M2):

db(Iq, Ij) = b(b matrix(Iq),b matrix(Ij))

where b matrix(Ij) is the matrix of binary RCC8 relations associated with the regions identified in
the j-th image.

The third and last component dtext(Iq , Ij) of the similarity measure deals with textual annota-
tion. The motivation comes from captions accompanying images in paper documents or present
‘near’ images in hyper-media documents. We employ quite standard textual information retrieval
techniques, see for instance [20], and therefore omit further explanation of this part of the similarity

22 A Spatial Similarity Measure based on Games: Theory and Practice

disonnected

overlap

exteranally connected

equal tangential part

non-tangential part

Fig. 6. The binary relationships graphs.

measure behalf for the standard definition of ‘textual distance’ between two image descriptions:

dtext(Iq, Ij) = (1− weighted occurrences(text vector(Iq), text vector(Ij))

length(text vector(Iq))
)

where text vector(Ij) is the list of meaningful words found in the description of the j-th image,
weighted occurences counts the number of instances of a word appearing in two textual vectors
weighted by a factor indicating the indexing power of the word. A word is more powerful if it
discriminates more, which in turns means that it occurs in less descriptions in the whole collection
of image captions. The dtext(Iq, Ij) follows a common way of defining a cosine distance among word
vectors, see for instance [34].

Received 2001

Disjunctions and Specificity in
Suppositional Defeasible

Argumentation

GUSTAVO ADRIAN BODANZA, Centro de Investigaciones de Lógica
y Filosof́ıa de la Ciencia, Universidad Nacional del Sur, 8000 Bah́ıa
Blanca, Argentina. E-mail: ccbodanz@criba.edu.ar

Abstract

This work introduces a system of suppositional argumentation (SAS), trying to give a foundation for
dealing intuitively with disjunctive information in a defeasible reasoning framework. Defeasible argu-
mentation systems proposed in the field of Artificial Intelligence lack in general of such a capability.
Our view is that suppositional reasoning is present in defeasible arguments involving disjunctions,
just as in reasoning by cases in classical logic. Disjunctive information can express different plausible
alternatives which consideration would improve the results of a debate. Here is studied in what
extent an argument assuming such plausible alternatives can be considered relevant within the given
context, and how those alternatives can be compared on basis of their explicative power. In conse-
quence, a debate can be affected in several aspects, among which counter argumentation, defeat and
justification have to be considered. Moreover, a comparison among arguments using specificity is
adopted, obtaining that also defeasible contrapositive arguments are treated intuitively. Interesting
properties of the system (consistency, a deduction theorem, reasoning by cases) are proved, and
common sense rationality is tested with several benchmark problems.

Keywords: Defeasible argumentation, suppositional reasoning, disjunctive information, contraposi-

tion, specificity.

1 Introduction

An important effort to formalize defeasible reasoning has been made in the last fifty
years through the study of defeasible argumentation systems, in the field of Artificial
Intelligence (Poole [17], Loui [8], Simari & Loui [25], Prakken [20], Vreeswijk [31]),
and recently also in the fields of legal argumentation (Kowalski & Toni [5]), Prakken
& Sartor [21], Verheij [30], etc.) and negotiation (Parsons et al. [10], Tohmé [28],
etc.). Argument systems evolved from philosophical ideas on non-deductive inferences,
principally those of Toulmin [29], Kyburg [6] and Rescher [23]. These systems are not
logics but models of defeasible argumentation that intend to capture one or more of
the following aspects:

• how defeasible arguments are constructed;

• which arguments can be considered relevant with respect to a given context;

• how arguments can be compared;

• which arguments are defeated;

• which arguments are justified.

23L. J. of the IGPL, Vol. 10 No. 1, pp. 23–49 2002 c©Oxford University Press

24 Disjunctions and Specificity in Suppositional Defeasible Argumentation

From the point of view of Artificial Intelligence, argument systems are aimed to
find both the theoretical basis of defeasible argumentation and the way of translat-
ing this into sound computer programs. In our opinion, this dual purpose restricts
something the comprehension of the deep philosophical foundations of defeasible ar-
gumentation. For example, much of the work in the literature restricts the language
to Horn clauses, which facilitates implementation in detriment of expressive capabil-
ities. This, moreover, is sometimes accompanied with restrictions on the inference
of prima facie conclusions: being α a prima facie reason for β, β can be tentatively
concluded only in case α is informed. This restriction clearly impedes suppositional
reasoning. Consider the exclusion of reasoning by cases: if γ is a prima facie con-
sequence of α as well as of β, then γ should be a prima facie consequence of α ∨ β;
nevertheless, if neither α nor β are derived, γ can not be concluded. The point is
that, even when this kind of restrictions may improve computability, the resulting
programs represent idealizations that seem too strong for a rational agent. On the
other hand, the philosophical basis for such idealizations are usually counterintuitive.

An outstanding approach can be found in John Pollock’s system OSCAR [11, 12,
13, 14, 15]. This system allows suppositional argumentation through prima facie
reasons that connect formulae of a non restricted first order language. Reasoning by
cases, for instance, is possible in OSCAR since dilemmas are essentially suppositional
forms of reasoning. We assume here that Pollock’s approach is right in general. On
the other hand, the introduction of suppositional arguments usually has drawbacks
that have not been addressed in OSCAR. More precisely, since defeasible arguments
have to interact dialectically with other arguments, it becomes necessary to determine
whether a suppositional argument is relevant to the context of discussion or not. In
this paper we shall see, in particular, that disjunctive information makes relevant some
suppositional arguments, improving the rationality of the justifications in a context
involving such information. A formalism for suppositional defeasible argumentation
will be provided, which enables reasoning with disjunctions beyond the simple ability
for constructing dilemmas.

Basically, the proposed system will use contextual disjunctive information to block
credulous arguments. Consider, for example, an ideal detective investigating a mur-
der. He has got evidence that the murder was committed by Bonnie or by Clyde, but
he does not precisely know by which one of them; he knows that the law says that
murderers are prima facie guilty, and that people is prima facie innocent (unless the
contrary is proven). Within this context, should the detective believe that Bonnie
and Clyde are both innocent (here we take ‘innocent’ and ‘guilty’ as opposed)?

Note that this problem covers all the five aspects of defeasible argumentation men-
tioned above:

• Argument construction: we need to deal with suppositional defeasible arguments,
since the conclusion that both Bonnie and Clyde are innocent must be counterar-
gued by an hypothetical analysis: Bonnie would not be innocent in the case that
she was the murderer, which is a supposition; the same occurs with Clyde.

• Relevance of suppositional arguments: the supposition that Bonnie is the mur-
derer, as well as the supposition that Clyde is the murderer, leaves place for a
relevant argument that blocks the conclusion that both of them are innocent, be-
cause of the contextual disjunctive information that at least one of them is the
murderer. Without this information (or any other) such supposition would not

1. INTRODUCTION 25

leave place for a relevant argument.
• Comparison among arguments: a preference relation must be established among

arguments to decide which ones are stronger than other ones. Consider, in our
example, the argument assuming the possibility of Bonnie being the murderer
and the argument concluding that both Bonnie and Clyde are innocent. It seems
rational to intend to establish a preference between these arguments since both are
equally relevant with respect to the contextual information. Instead, an argument
assuming that, say, Lucky is the murderer might be preferred to that for Bonnie
being guilty, but not in the present context where it is known that the murderer
is either Bonnie or Clyde. On the other hand, preference may be established on
several grounds. We shall show that specificity, a usual criterion in argument
systems, can be applied naturally to suppositional argumentation.

• Defeat among arguments: preferences are to be used to determine defeat among
arguments when conflicts arise. At this point, it will be important to note that in
some cases a relevant suppositional argument can be defeated if evidence can be
used against its suppositions, even when these are plausible. In our example, this
would be the case if new evidence provides an alibi for Bonnie, which would reject
the argument for Bonnie’s guilt supposing she is the murderer.

• Argument justification: any argument, suppositional or not, may be justified at
the end of the process unless there exists a justified contextually relevant argu-
ment against it. Of course, warranted conclusions (or defensible, as we shall call
them) will be only those supported by non-suppositional arguments, that is, ar-
guments for which any supposition introduced for establishing the proof has been
discharged. In the example, the detective could have neither justified arguments
for believing that both Bonnie and Clyde are innocent (since there exist relevant
suppositional counterarguments) nor justified arguments about who is actually
the murderer (since there are not justified non-suppositional arguments for this).

All these problems can be approached modularly, as exhibited by the different pro-
posals for argument systems. For instance, Lin et al. [7] give a notion of argument,
Dung [1] deals with the argument justification problem, Poole [17] focused on com-
parison among arguments through the study of specificity, and Loui [8] and Simari
et al. [25] approached all the mentioned subjects. Given the nature of the problem
we are going to deal with, our work will be mainly centered on the development of
the two first items. The third, that of preference, will be based on Poole’s specificity.
Defeat will be defined on the basis of that preference criterion, and justification will
be based on a Simari & Loui’s reformulation of Pollock’s notion of warrant.

1.1 A motivating example and organization of the paper

For our study we shall analyze the structure of an example given by Poole([19], p.
284) (a structure similar to that of the above example of Bonnie and Clyde). Suppose
that we know two birds, Opus and Tweety, at least one of which is a penguin, but
we do not actually know which of them is it. Accepting that birds tentatively fly and
penguins tentatively do not fly (assuming that exceptions may exist to this), shall
we believe that, say, Tweety, flies? On the other hand, shall we believe that it does
not fly? It seems reasonable to think that we cannot give an affirmative answer to

26 Disjunctions and Specificity in Suppositional Defeasible Argumentation

neither of these questions. The reason why we cannot claim that Tweety flies is that
in the case that this bird is the penguin, then it would not fly; and the reason why we
cannot claim that Tweety does not fly is that in the case that Opus is the penguin,
not Tweety, then Opus would fly.

As this problem shows, we have to deal with arguments to assert, for example, that
assuming or supposing that Tweety is a penguin then (tentatively) it would not fly.
Arguments like this will be used to block credulous arguments like that concluding
that both Tweety and Opus fly since they are birds. Suppositional argument struc-
tures will be defined within a suitable language (Section 2) for constructing a system
similar to Pollock’s OSCAR (Section 3). This will be sufficient to achieve defeasible
reasoning by cases. Then we shall investigate examples like that of Poole where de-
bates carried out with defeasible arguments are particularly affected by disjunctive
information. In the debate about flight, for example, disjunctive information makes
relevant the hypothesis that Tweety is a penguin: this relevance is based on the con-
textual fact that at least one between Tweety and Opus is a penguin. Following this
intuition, we shall define a formal criterion to decide whether or not an argument
is relevant on the basis of the contextual disjunctive information. For this we shall
appeal to the minimal models of the formulas representing the contextual information
(Section 5.1).

On the other hand, we shall study some circumstances under which relevant sup-
positional arguments can be objected. In particular, we shall refer to cases in which
the hypotheses of relevant suppositional arguments are attacked by non-suppositional
(founded, as we shall call them) arguments (Section 6). This notion together with
Poole’s specificity (Section 4) will give us a criterion for defeat. Defeat will complete
the characterization of justification, which will be defined following the approach by
Simari & Loui (Section 3.1).

2 Language for arguments

Let us introduce a formal language for arguments. Let L be a first-order language,
and let ∆ be a meta linguistic binary relation over sentences of L. The corresponding
ordered pairs are called defeasible rules1. A defeasible rule is symbolized by ‘α>−−β’,
which is intended to mean ‘α is a good reason for supporting β’2. Free variables
occurring in formulae of L will be interpreted as being universally quantified. Now
we define

Definition 2.1 An argument is a structure 〈Def, Sup, σ〉, where Def ⊆ ∆ is a finite
set of grounded instances of defeasible rules (i.e., defeasible rules in which formulae
contain only individual constants), called the argument’s Defeasible support; Sup ⊂
L is a finite set, called the argument’s Suppositions; and σ ∈ L is called the argument’s
conclusion.

If 〈Def, Sup, σ〉 is an argument such that Def = ∅, we shall say that it is a
conclusive (or non-defeasible) argument for σ; if Sup = ∅ then we shall say that it is
a founded (or non-suppositional) argument.

1These are the same kind of entities appearing in the systems of Loui [8] and Simari & Loui [25].

2From now on we shall drop quotations when terms are clearly mentioned.

2. LANGUAGE FOR ARGUMENTS 27

ARGUMENTS conclusive defeasible

founded -without defeasible rules -with defeasible rules
-without suppositions -without suppositions

suppositional -without defeasible rules -with defeasible rules
-with suppositions -with suppositions

Table 1. A taxonomy of arguments.

Hence arguments may be conclusive or defeasible, founded or suppositional —cf.
table 1.

We introduce the symbol ‘⇒∆’ to denote a relation between sets of arguments and
arguments, called argumentative consequence. The expression ‘Args⇒∆arg’ denotes
that the argument arg is an argumentative consequence of the set of arguments Args3.
The relation is defined by the following rules:

Sup (supposition):
For all Sup ⊂ L and for all σ ∈ Sup, ∅ ⇒∆〈{}, Sup, σ〉

Deduction:
If {θ1, . . . , θn} ` σ4 then {〈Def1, Sup1, θ1〉}, . . . , 〈Defn, Supn, θn〉} ⇒∆ 〈Def1∪ . . .∪
Defn, Sup1 ∪ . . . ∪ Supn, σ〉

DMP (defeasible modus ponens):
For any set of defeasible rules ∆ and for every grounded instance of a defeasible rule
θ>−−σ ∈ ∆, {〈Def, Sup, θ〉}⇒∆〈Def ∪ {θ>−−σ}, Sup, σ〉

Cond (conditionalization):
{〈Def, Sup∪ {θ}, σ〉}⇒∆〈Def, Sup, (θ → σ)〉

These rules are interpreted as valid steps in the construction of defeasible argu-
ments. Any sequence of these valid steps from a set of arguments to a distinguished
argument is called a defeasible proof. As it is evident in the previous list, we are partic-
ularly interested in including argumentative versions of all the valid rules of inference
of classical logic. The rule Cond is special in that it allows to discharge suppositions.
This implies that defeasible rules can be used to derive material implications, but
those material implications could be supported only defeasibly.

Example 2.2 From {〈{}, {θ}, θ〉} and the defeasible rule θ>−−σ ∈ ∆, we derive
〈{θ>−−σ}, {θ}, σ〉 by DMP; then, by Cond we get 〈{θ>−−σ}, {}, (θ→ σ)〉. So, in this
argument the material implication θ → σ has a defeasible support given by θ>−−σ.
Definition 2.3
We say that an argument 〈Def ′, Sup′, θ〉 is a subargument of 〈Def, Sup, σ〉 iff

1. Def ′ ⊆ Def , and
2. Sup′ ⊆ Sup.

3The symbol ‘⇒∆’ means that the applied defeasible rules used in the derivation are elements in ∆.

4‘vdash’ stands for the syntactical consequence relation in classical logic.

28 Disjunctions and Specificity in Suppositional Defeasible Argumentation

The notion of subargument will play a key role in determining defeat among argu-
ments (this will be treated in Section 6).

Example 2.4 For the above example 2.2, we have a defeasible proof in the following
sequence:

(1) 〈{}, {θ}, θ〉 (Sup)
(2) 〈{θ>−−σ}, {θ}, σ〉 (DMP, 1)
(3) 〈{θ>−−σ}, {}, (θ→ σ)〉 (Cond, 2)

The argument in line (1) is a subargument of the argument in line (2), but neither of
these is a subargument of that in line (3). Moreover, each one is a trivial subargument
of itself.

It is easy to see that defeasible proofs can be established for dilemmas (in particular,
for reasoning by cases) and contraposition, forms of reasoning which are rare beasts
in the best known default formalisms.

In the next section we show how an ideal agent’s defeasible knowledge can be
systematized using this language, and how the interaction among arguments can be
modeled to define the resulting justified (or “warranted”) arguments.

3 SAS: suppositional argument systems

An agent’s defeasible knowledge can be represented in a suppositional argument sys-
tem. A suppositional argument system is a pair SAS = 〈K,∆〉, where K is a finite
and consistent set of formulae of L, called the context of SAS, and every element of
K stands for a basic belief of the agent (an axiom of the system). ∆ is a finite set of
defeasible rules. We define [K] = {argi}, where each argi is the conclusive founded
argument for φi, for each φi ∈ K; [K] expresses the “argument-axioms” of SAS. The
set of all the “argument-theorems” of SAS is contained in the closure under ⇒∆

of [K], which will be denoted by [[K]]. These argument-theorems represent all the
arguments that the agent may consider in order to defend a defeasible inference; so,
in considering whether an inference σ can be defended or not in her/his context of
beliefs, the agent could find in [[K]] some arguments supporting σ and others refut-
ing σ. The defensibility or not of σ will arise from the interaction of those opposite
arguments, as we will see next.

3.1 Argument justification

The aim of this section is to anticipate a notion of justification. We will not discuss
how to define a justification-status assignment to arguments, which is out of the scope
of this paper5. Instead, we just shall adopt the notion as defined by Simari & Loui.
These authors take the notion up from Pollock, whose idea is that arguments can be
defeated in a sequence of levels, where all arguments are in at level-0, and an argument
is in at level-(n+1) if it is non-defeated by an argument in at level-n (cf. Pollock [11]
and also [14] for a more refined definition that deals with self-defeating arguments).
Simari and Loui reformulate the notion by considering whether in arguments are

5Readers who are interested in this theme can find in Dung [1] a very treatise.

3. SAS: SUPPOSITIONAL ARGUMENT SYSTEMS 29

active as supporting or interfering arguments, differentiating attacked arguments from
defeated ones.

By the moment we appeal to the reader’s intuition to understand the involved terms
‘attack’ and ‘defeat’. That intuition will be enough by now, but the terms shall be
formally defined later in Section 6. Let us say simply that a defeater is an attacker
that is “stronger” than the defeated one, and that it is not transitive.

Definition 3.1 (Adopted from Simari & Loui [25].) An argument is active at various
levels as either a supporting or an interfering argument:

1. All arguments are level-(0) S-arguments (supporting arguments) and I-arguments
(interfering arguments).

2. An argument is a level-(n+1) S-argument iff it is not attacked by a level-(n) I-
argument.

3. An argument is a level-(n+1) I-argument iff it is not defeated by a level-(n) I-
argument.

Then the justified arguments are identified as follows:

Definition 3.2 An argument 〈Def, Sup, σ〉 ∈ [[K]] is justified iff there exists m such
that for all n ≥ m, 〈Def, Sup, σ〉 is a level-(n) S-argument.

Definition 3.3 A sentence σ ∈ L is defensible in SAS iff there exists a justified
founded argument for σ in SAS.

Let us consider some examples.

Example 3.4 Consider our introductory motivating example. We have the context:

K = {penguin(x)→ bird(x),
bird(Opus), bird(Tweety),
penguin(Opus) ∨ penguin(Tweety)}

and the following defeasible rules:

∆ = {bird(x)>−−flies(x),
penguin(x)>−−¬flies(x)}.

Then we can obtain —among others— these arguments:

arg1 = 〈{bird(Opus)>−−flies(Opus)}, {}, f lies(Opus)〉,

arg2 = 〈{bird(Tweety)>−−flies(Tweety)}, {}, f lies(Tweety)〉,

arg3 = 〈{penguin(Opus)>−−¬flies(Opus)}, {penguin(Opus)}, ¬flies(Opus)〉,

arg4 = 〈{penguin(Tweety)>−−¬flies(Tweety)}, {penguin(Tweety)},
¬flies(Tweety)〉.

Note that arguments arg1 and arg2 have no suppositions since their premises
bird(Opus) and bird(Tweety), respectively, are contextual facts. The arguments arg3
and arg4, have penguin(Opus) and penguin(Tweety) as suppositions, respectively.

30 Disjunctions and Specificity in Suppositional Defeasible Argumentation

This example shows a first feature of the system: through suppositional argumen-
tation we can bring the contextual disjunctive information into the debate to do
something more than reasoning by cases. The second is how suppositional arguments
using that information improve the rationality of the debate. Assuming that arg3
defeats arg1 and arg4 defeats arg2, then, following definition 3.1, arguments arg3
and arg4 are justified. So, no conclusion (neither affirmative nor negative) about the
capacity of flight of Tweety and Opus would be defensible, since there are no justified
founded arguments about that, neither pro nor con.

Another thing to note is the system’s capability to use defeasible rules in contra-
positive reasoning. In spite of the fact that some undesirable arguments could be
constructed by means of contrapositive reasoning, these are innocuous. For example,
assuming bird(Opus) we can infer successively:

〈{bird(Opus)>−−flies(Opus)}, {bird(Opus)}, f lies(Opus)〉 (by DMP)

〈{bird(Opus)>−−flies(Opus)}, {}, bird(Opus) → flies(Opus)〉 (by Cond)

and then, together with arg3 and through Deduction:

〈{penguin(Opus) >−−¬flies(Opus), bird(Opus)>−− flies(Opus)}, {penguin(Opus)},
¬bird(Opus)〉.

But this undesirable argument (undesirable because we cannot accept that Opus is
not a bird assuming it is a penguin) should be defeated by a conclusive argument
under the same supposition:

〈{}, {penguin(Opus)}, bird(Opus)〉

as well as by the founded conclusive argument taking bird(Opus) just as a fact:

〈{}, {}, bird(Opus)〉.

On the other hand, contrapositive reasoning may be suitable in some contexts.
Consider, for example, a context where sport cars tend not to be tourism cars, Fiats
are usually tourism cars, Ferraris are usually sport cars, Fiat cars tend to be non-fast,
Ferrari cars tend to be fast, and Peter’s car is a Fiat or a Ferrari, but it is known to
be a tourism car. The question is: is Peter’s car fast or not? Note that the fact that
Peter’s car is a tourism car “confirms” the hypothesis that it is a Fiat while “refutes”
the hypothesis that it is a Ferrari. So, the conclusion that it is non-fast appears to
be more intuitive. The formal treatment of this example will be shown in Section 6,
after we develop more theoretical aspects.

The next example shows the system’s capability for reasoning by cases.

Example 3.5 Consider a norm for no parking at some determined place in a street,
with exception to ambulances and school buses. We can formulate the context:

K = {ambulance(x) → vehicle(x),
schoolbus(x) → vehicle(x),

4. SPECIFICITY 31

vehicle(a),
ambulance(a) ∨ schoolbus(a)};

and the defeasible rules:

∆ = {vehicle(x)>−−¬parking(x),
ambulance(x)>−−parking(x),
schoolbus(x)>−−parking(x)}

(parking(x) means ‘x has parking permission’). Then we can get the following argu-
ments:

arg1 = 〈{vehicle(a)>−−¬parking(a)}, {}, ¬parking(a)〉,

arg2 = 〈{ambulance(a)>−−parking(a)}, {ambulance(a)}, parking(a)〉,

arg3 = 〈{schoolbus(a)>−−parking(a)}, {schoolbus(a)}, parking(a)〉.

If arg2 defeats arg1 and arg3 defeats arg16, then arguments arg2 and arg3 are
justified, while arg1 is not justified.

4 Specificity

Specificity can be adapted to SAS in a natural way, since suppositional reasoning is
at the core idea of the notion. We will follow the main intuitions of Poole [17], and
their reformulation by Simari & Loui [25].

Poole views arguments as explanations, more precisely, as explanations in the form
of the Hempel’s covering-law model. From this point of view, an argument is a
set of general (legal), possibly probabilistic statements, which together with some
particular information, the antecedent conditions, account for other statement, the
explanandum. When the set of general statements includes some probabilistic (or
prima facie, or default) statements, the argument can be compared with a rival in
terms of specificity: the more specific argument gives the best explanation. The
criterion says, informally, that an argument argX is more specific than another argY ,
given any particular antecedent condition P , if the fact that the legal part of argX
together with P is sufficient to derive argX ’s conclusion, implies that the legal part
of argY together with P is also sufficient to derive argY ’s conclusion, but the inverse
is not true. It is important to remark that what is compared is only the legal part of
arguments, given any particular antecedent conditions.

For example, given the antecedent condition that a is a penguin, we may conclude
that a does not fly, based on the general knowledge that penguins are birds that
usually do not fly (assuming they do it in remotely strange cases). On the other
hand, we may conclude that a flies based on the general knowledge that penguins
are birds, and birds usually fly. But the first is the more specific argument, since
any particular condition which together with ‘penguins usually do not fly’ enables to
conclude ‘a does not fly’, also enables to conclude that ‘a flies’ together with ‘birds
usually fly’; nevertheless, some particular conditions (for example, that a is a bird)

6In fact, by means of specificity these conditions are true.

32 Disjunctions and Specificity in Suppositional Defeasible Argumentation

enable to conclude ‘a flies’ through ‘birds usually fly’, but not to conclude ‘a does not
fly’ through ‘penguins usually do not fly’.

In order to formalize this criterion in our symbolism, we need to differentiate the
particular (ground) sentences from the general (non-ground) sentences in the context.
We divide the context K of SAS in two subsets KP and KG, containing the former
and the later, respectively7. So, we can partition also the set [K] of arguments for
contextual sentences in two subsets [KP] and [KG]. Now we can formally express the
notion of ‘specificity’ in SAS as follows.

Definition 4.1
An argument 〈Def1, Sup1, σ〉 is strictly more specific than 〈Def2, Sup2, θ〉 iff

1. for any set P of ground literals, and for some Def ′1 ⊆ Def1, if 〈Def ′1, P, σ〉 ∈
[[KG]] then for some Def ′2 ⊆ Def2, 〈Def ′2, P, θ〉 ∈ [[KG]]; and

2. there exists a set P of ground literals such that
(a) for some Def ′2 ⊆ Def2, 〈Def ′2, P, θ〉 ∈ [[KG]]; and
(b) for all Def ′1 ⊆ Def1, 〈Def ′1, P, σ〉 6∈ [[KG]]; and
(c) 〈{}, P, θ〉 6∈ [[KG]] (non-triviality condition).

Also the relations of equi-specificity and at least as specific as can be introduced
in SAS with similar formulations to those given by Simari & Loui, but that is not
important for our purpose.

Example 4.2 (Example 3.4 revisited). The argument:

arg3 = 〈{penguin(Opus)>−−¬flies(Opus)}, {penguin(Opus)}, ¬flies(Opus)〉

is strictly more specific than

arg1 = 〈{bird(Opus)>−−flies(Opus)}, {}, f lies(Opus)〉,

since

1. supposing penguin(Opus) we have:

〈{penguin(Opus)>−− ¬flies(Opus)}, {penguin(Opus)}, ¬flies(Opus)〉

and

〈{bird(Opus)>−− flies(Opus)}, {penguin(Opus)}, f lies(Opus)〉

(since (penguin(x) → bird(x)) ∈ KG),

2.(a) supposing bird(Opus) we obtain 〈{bird(Opus)>−− flies(Opus)}, {bird(Opus)},
f lies(Opus)〉, but

7This is the same strategy used in the earlier formulations of ‘specificity’.

4. SPECIFICITY 33

(b) supposing bird(Opus) we cannot obtain any argument for ¬flies(Opus), and
also

(c) 〈{}, {bird(Opus)}, f lies(Opus)〉 cannot be derived.

In the same manner we could show that arg4 is strictly more specific than arg2.

As we have seen, Poole’s specificity is adaptable to SAS with no essential modi-
fications, since suppositional reasoning is at the very heart of the notion. The only
restriction we have introduced is that the arbitrary suppositions in P must be ground
literals (i.e., ground atoms or their negation), which avoids some undesirable behav-
iors. Moreover, we consider that literals are more appropriate than arbitrary formulae
for expressing the idea that the antecedent conditions of an explanation are particular
circumstances. In fact, note that, for example, the formula α→ β does not express a
particular circumstance but a set of possible circumstances, to wit, that β is a fact,
or α and β are facts, or neither α nor β are facts.

The introduction of specificity in SAS yields important behaviors not seen in some
related approaches, as in Simari & Loui’s. In particular, in our system specificity al-
lows to decide among defeasible arguments which use contrapositive reasoning. Con-
sider the following framework (meta-variables are used for simplicity):

Example 4.3 (Specificity and contrapositive reasoning)

K = {¬β ∧ ¬γ}
∆ = {¬α>−−(β ∨ γ), α>−−β}

We can get the arguments:

arg1 = 〈{¬α>−−(β ∨ γ)}, {}, α〉

arg2 = 〈{α>−−β}, {},¬α〉

(arg1 can be constructed by assuming ¬α and deriving defeasibly β∨γ, then applying
conditionalization to derive a material conditional discharging the assumption, and
next applying deduction (modus tollens) using ¬β ∧ ¬γ. arg2 can be constructed
similarly by assuming α.) Note that arg1 is strictly more specific than arg2 since
any assumption under which an argument for α can be constructed using the arg1’s
defeasible support, can also be used to construct an argument for ¬α using the arg2’s
defeasible support, but there is an assumption, to wit, {¬β}, under which an argument
for ¬α can be constructed using the arg2’s defeasible support, and it is not possible
to use it to construct an argument for α using the arg1’s defeasible support.

It is remarkable that in some systems using specificity (e.g., Loui’s and Simari
& Loui’s) two defeasible structures like these would not be comparable. This is
because of the postulated one-directionality of defeasible rules, which amounts to
define specificity by considering the “activation” of the rules on basis of the availability
of their antecedents. In systems like these, of course, contrapositive reasoning is not
allowed, so that their authors might find counterintuitive the behaviors we take for
rational.

34 Disjunctions and Specificity in Suppositional Defeasible Argumentation

5 Relevance of suppositional arguments with regard to
disjunctive information

In this section we will study in what extent disjunctive information can give rele-
vance to suppositional arguments. In our motivating example, as we have seen, some
suppositional arguments come into the debate in order to interfere counterintuitive
conclusions such as ‘Tweety flies’ and ‘Opus flies’. Why those suppositional arguments
are worthy of being taken on account for that interference? May any suppositional
argument be used for such an interference? In order to look for an answer, let us
analyze another example8.

Example 5.1 Let the context be K = {bird(Opus)∨bat(Opus), penguin(x) → bird(x)}
(Opus is a bird or a bat; moreover, all penguins are birds) and let the defeasible rules
be ∆ = {penguin(x)>−− ¬flies(x), bat(x)>−− flies(x), bird(x)>−− flies(x)}. Then
we can get, among others, the following arguments:

arg1 = 〈{penguin(Opus)>−−¬flies(Opus)}, {penguin(Opus)}, ¬flies(Opus)〉

arg2 = 〈{bird(Opus)>−−flies(Opus)}, {bird(Opus)}, f lies(Opus)〉

arg3 = 〈{bat(Opus)>−−flies(Opus)}, {bat(Opus)}, f lies(Opus)〉

arg4 = 〈{bird(Opus)>−−flies(Opus), bat(Opus)>−−flies(Opus)}, {}, f lies(Opus)〉
The suppositional argument arg1 says that, assuming that Opus is a penguin, we can
conclude tentatively that it does not fly. arg2 and arg3 suppose respectively that
Opus is a bird and Opus is a bat, then they are used to derive arg4, which concludes
tentatively that Opus flies, discharging the suppositions. If we take Poole’s specificity
as the preference criterion, arg1 is preferred to arg2, so arg2 is defeated, and the
same happens to arg4; hence, contrary to our intuition, the tentative conclusion that
Opus flies would be overruled.

What is wrong with this? The wrong point is that we have no good reason for
assuming that Opus is a penguin, hence arg1 is not worth of being considered. From
a formal point of view, there is no structural difference neither between arg1 and
arg2, nor between arg1 and arg3: all of them are formally right. The difference
lies, instead, at the information level. The suppositions taken by arg2 and arg3
are both equally plausible alternatives, since we have as data that Opus is a bird or
a bat; nevertheless, no contextual information makes plausible the supposition that
Opus is a penguin, as arg1 assumes. We can extract a criterion from this remark,
since contextual information —in particular, information in disjunctive form— can
give relevance to some suppositional arguments but not to others: we may say that
if a supposition is plausible —in the above sense— then an argument built on it is
contextually relevant.

Obviously, we are considering a very partial aspect of relevance. The sense in which
we use here the terms ‘relevance’ and ‘contextual relevance’ is only in relation to the
informational problems discussed above. Moreover, when we characterize supposi-
tional arguments as ‘not relevant’, we intend to mean that it is not relevant in this

8This example was provided by H. Prakken in a personal communication.

5. RELEVANCE OF SUPPOSITIONAL ARGUMENTS 35

sense, and it is assumed to be irrelevant in every other sense9. Once this is clear, we
can face the problem of formalizing our notion of contextual relevance.

5.1 Plausible alternatives and contextual relevance

As we have said in the above discussion, arguments like arg1 are not to be taken as
contextually relevant because they are based on suppositions which are not backed
up by the context. If, on the other hand, an argument’s suppositions are informed
as possible cases by a disjunction in the context (as occurs with arg2 and arg3),
then we take them as plausible alternatives, and the argument is to be considered
contextually relevant. We shall identify a subset of [[K]] whose elements are all the
contextually relevant arguments on basis of the plausible alternatives they take as
suppositions. We shall consider here the semantical level of the information, that is,
we shall focus on what is informed by the context in spite of how it is expressed. In
the next section, instead, we shall see how a contextually relevant argument can be
constructed syntactically without semantical references.

To begin with, let us introduce some semantical entities. A model µ of a set of
sentences A ⊂ L is an interpretation I assigning the truth value ‘true’ to every
sentence in that set. The model µ can be viewed as a set containing the ground
atoms which are true in I, i.e., a Herbrand model. Given two Herbrand models µ1

and µ2 of A we say that µ1 is at least as preferred as µ2 iff µ1 ⊆ µ2. A Herbrand
model µ1 of a set A ⊂ L is preferred iff there is no other Herbrand model µ2 of A
which is as less as preferred as µ1, i.e., µ1 is minimal.10. As usual, we say that α
is true in µ iff µ |= α (where ‘|=’ stands for the (classical) semantical consequence).
From now on, we shall talk about a Herbrand model whenever we say ‘model’, unless
other case be specified.

We shall take the notion of preferred model to precise what we intend to mean
with ‘plausible alternative’. Consider the minimal models of K in example 5.1:
there are two, one containing bat(Opus), and the other containing bird(Opus). In-
stead, penguin(Opus) is not contained in any minimal model of K(note that though
penguin(x) → bird(x) is in K, this is true whenever for every x it is true that
¬penguin(x)∧ ¬bird(x), hence the conditional is true in every model containing nei-
ther penguin(x) nor bird(x), for any x). This is the reason why we say that bat(Opus)
and bird(Opus) are plausible alternatives, but not penguin(Opus). In fact, we state
that

Definition 5.2 A ground atom α is a plausible alternative in a set of sentences S if
and only if α ∈ µ for some preferred model µ of S.

Hence, the suppositions on which arguments arg2 and arg3 are based —bird(Opus)
and bat(Opus), respectively— are plausible alternatives in K, while the supposition
on which argument arg1 is based (penguin(Opus)) is not. So, we consider arguments
like arg2, arg3 and arg4 as contextually relevant arguments, and discard as such
arguments like arg1. For the formal definition of ‘contextual relevance’ we have to

9A broad discussion about several conditions determining contextual relevance of suppositions can be found in

D.Sperber & D. Wilson [27].

10Minimal (Herbrand) models semantics was the key in the study of the so called closed world assumption, i.e., the

assumption that not-α is believed if α is not believed —cf., for instance, Minker [9]. Nevertheless, our use of this

semantics is not necessarily related to the CWA.

36 Disjunctions and Specificity in Suppositional Defeasible Argumentation

take into account that plausible alternatives can be just implicit in the suppositions
of an argument. In this case, the argument will be contextually relevant if those
implicit alternatives are sufficient for the argument to be constructed, using the same
defeasible rules to arrive to the same conclusion. These considerations lead us to the
next definition:

Definition 5.3 An argument 〈Def, Sup, σ〉 is contextually relevant in 〈K,∆〉 iff there
exists a (possibly empty) set of atoms S such that 〈Def, S, σ〉 ∈ [[K]] is an argument,
and if α ∈ S then it is verified that:

1. α is a plausible alternative in K, and
2. 〈∅, Sup, α〉 ∈ [[K]] (α is a logical consequence of Sup).

This definition states that every founded argument is contextually relevant (case
S = ∅) and any argument based on suppositions that imply deductively some plausible
alternatives in K, is contextually relevant if those plausible alternatives are sufficient
for constructing a contextually relevant argument, for the same conclusion and with
the same rules.

Example 5.4 (Continuation of example 5.1) arg4 is contextually relevant because
it is founded; arg2 and arg3 are both contextually relevant because bird(Opus) and
bat(Opus) are both plausible alternatives and 〈∅, {bird(Opus)}, bird(Opus)〉, 〈∅, {bat
(Opus)}, bat(Opus)〉 ∈ [[K]]. On the other hand, arg1 is not contextually relevant
since penguin(Opus) is not a plausible alternative.

5.2 Syntactical approach to case arguments

Arguments arg2 and arg3 in example 5.1 are based on suppositions which are com-
ponents of some disjunction in the context. We may call arguments like these ‘case
arguments’, since their suppositions (if they have some) are possible cases expressed
by disjunctions. Case arguments give us the idea of what a contextually relevant
suppositional argument is. But we have to take into account that non-disjunctive in-
formation in K can also be considered plausible, so case arguments should constitute
a broader subclass of arguments than only those depending on information in dis-
junctive form. For example, ¬α→ β says that α happens or β happens, so it can be
treated as being α∨β. Fortunately, we can get all the information in K in disjunctive
form, transforming K into a set KDNF , where each formula in K is rewritten in its
disjunctive normal form; so, if a formula as the above conditional is contained in K
then the formula (α ∧ β)∨ (¬α ∧ β)∨ (α ∧ ¬β) is contained in KDNF . Note that this
formula expresses all the possible cases in which ¬α→ β is true, and the context says
that at least one of them is true. Hence, an argument assuming that some of these
cases are true can be relevantly used for counterarguing an argument that ignores
such a possibility.

We shall need some functions, each selecting a single component from each disjunc-
tion in KDNF , taking up all the literals occurring in that component.11 Each selection
takes up a set of alternatives informed by the context, and we are interested in the al-
ternatives that positively may happen. For instance, for a disjunctive formula (¬α∧β)

11Cf. our use of this function with a similar one given by Geffner et al. [4]. See Section 8.

5. RELEVANCE OF SUPPOSITIONAL ARGUMENTS 37

∨(¬α ∧ ¬β) ∨(α ∧ β) there will be some function selecting the component (¬α ∧ β),
where the set of alternatives offered is {¬α, β}, hence the only positive alternative
selected by that function with regards to that formula is β. We shall interpret ¬α as
saying that α is not an alternative, instead of that not-α is an alternative. Hence, β
is the only alternative that occurs in {¬α, β}. As we shall see, this interpretation is
captured by the Herbrand models semantics we used before.

Let us symbolize with f+ the set of positive literals selected by f , and let us call
it a positive selection. Then we can define a preference relation v among positive
selections as follows: f+ v g+ iff f+ ⊆ g+ and f has no contradictory literals (the
example below shows this possibility). A positive selection f+ is minimal iff for all
g+, if g+ 6= f+ then g+ 6v f+. Minimal positive selections take up the minimal
positive facts whose occurrence would confirm the contextual information, so we shall
prefer those selections to non-minimal ones. (Non-minimal selections could take up
redundant, “non-plausible”, information.)

Example 5.5 Let K = {α,¬α∨β}. Then KDNF = {α, (¬α∧β) ∨(¬α∧¬β) ∨(α∧β)}.
Then we have three different positive selections:

f+ = {α, β} (where f = {α,¬α, β})
g+ = {α} (where g = {α,¬α,¬β})
h+ = {α, β} (where h = {α, β})
Note that g+ is minimal (w.r.t. set inclusion) among the three, but g contains con-
tradictory literals, as well as f . So, since h is the only contradiction-free selection,
h+ is the only minimal (w.r.t. v) positive selection, thus the only preferred one.

The correspondence between preferred positive selections and minimal models is
established in the next results (such correspondence is expressed in set-theoretical
terms, since both positive selections and (Herbrand) models are sets of atoms).

Lemma 5.6 If f+ is a preferred positive selection on KDNF , then there exists a
preferred model µ of K such that µ ⊆ f+.

Proof. For any selection f , it is obvious that f |= φ, for all formulae φ ∈ K, and if ν
is free of contradictory literals, then f+ itself (which is a set of atoms) is a Herbrand
model of K. Now, suppose that f+ is a preferred positive selection, so that f is free of
contradictions. Hence, there exists some Herbrand model µi of K such that f+ |= α,
for all atoms α ∈ µi, and since for some minimal model µ, µ ⊆ µi, then µ ⊆ f+.

Lemma 5.7 If µ is a minimal model of K, then there exists a preferred positive
selection f+ on KDNF such that f+ ⊆ µ.

Proof. The lemma follows immediately from the two statements: (1) for every mini-
mal model µ of K, there exists a contradiction-free selection ν such that f+ ⊆ µ; and
(2) f+ is preferred.

Proof for (1): It is obvious that µ is a Herbrand model for each formula φi ∈ K. Let
(δi1∨ . . .∨δik) the DNF of φi (clearly, each δij (1 ≤ j ≤ k) is a conjunction of literals).
So, for each formula φi, there exists at least one δij for which µ is a Herbrand model.
Let now δ be the set of all such δij . Clearly, δ ≡ ν for some selection f on KDNF .
Then, µ is a Herbrand model for f , and since both f+ and µ are sets of atoms, hence

38 Disjunctions and Specificity in Suppositional Defeasible Argumentation

f+ ⊆ µ. (Moreover, this implies that f is consistent, otherwise f+ would contain
some negative literal, which is impossible.)

Proof for (2): Suppose by the absurd that, in the above proof, f+ is not preferred.
Then (i) there exists some contradiction-free g+ ⊂ f+, and since µ is a Herbrand
model of f (as demonstrated above), then (ii) µ is a Herbrand model of f+, hence
(iii) µ is a Herbrand model of g+. Since f+ and g+ are sets of atoms, then f+ ⊆ µ
follows from (ii), which together with (i) and (iii) implies g+ ⊂ µ. But, since it is
obvious that g |= φ for all formulae φ ∈ K, then g+ is a Herbrand model of K which is
lesser than µ, contradicting that µ is minimal. Hence, our hypothesis must be false,
that is, f+ must be preferred.

Lemma 5.8 For all set of atoms A, A is a preferred positive selection on KDNF if
and only if A is a preferred model of K.

Proof. Immediate from lemmas 5.6 and 5.7.

Preferred positive selections enable us to give a syntactical account of the notion
of ‘case argument’:

Definition 5.9 An argument 〈Def, Sup, σ〉 ∈ [[K]] is a case argument iff there exists
a (possibly empty) set of atoms S such that 〈Def, S, σ〉 is an argument in [[K]], and
if α ∈ S then it is verified that:

1. α ∈ f+ for some preferred positive selection f+, and
2. 〈{}, Sup, α〉 ∈ [[K]] (α is a logical consequence of Sup).

We can get the following result:

Proposition 5.10 For any argument arg, arg is a case argument in SAS if and only
if arg is contextually relevant in SAS.

Proof. From lemma 5.8 there is an equivalence between condition 1 in definition 5.3
and condition 1 in definition 5.9, and clearly condition 2 in both definitions are the
same.

5.3 The complexity of finding KDNF , the selection functions and the
minimal models

An important point is how complex is to find KDNF having K. As it is known, the
DNF of a formula is obtained from the lines of the truth table in which that formula
is true. Hence, the search space of the problem has 2n elements, where n is the
number of atoms occurring in the formula. So, the problem has the complexity of the
satisfiability problem, which is known to be NP-complete12.

With respect to the total number of selection functions generated by KDNF , let
KDNF = {φ1, . . . , φn} be such that each φi is the DNF of a corresponding formula in
K. Then the number of selections is

∏
ki, where ki is the number of disjuncts occurring

in φi. Since this is the size of the search space for preferred positive selections and, by
lemma 5.8, preferred positive selections and minimal models are the same, we have
that the search space for minimal models has

∏
ki elements.

12On this subject see, for instance, Garey & Johnson [3].

6. HOW CASE ARGUMENTS INTERACT 39

In order to know the size of the whole problem, note that the greatest possible
number of disjuncts of a formula φi ∈ KDNF is 2n, where n is the number of atoms
of φi. This is the case when φi is a tautology (because each line of its truth table
yields a disjunct in the DNF). Hence, if every φi ∈ KDNF is a tautology, the total
number of selection functions is

∏
2ni , where ni is the number of atoms occurring in

the formula φi.

6 How case arguments interact

6.1 A preference among alternatives

In this section we shall propose a preference among plausible alternatives. Our intu-
ition is that, in some systems it is possible to find some plausible alternatives having
more “explicative power” than others. What we intend to say with the “explicative
power” of plausible alternatives, is that it could be the case that some facts —let us
call ‘fact’ to any literal that is true in every model of K— can be defeasibly explained
(or predicted) by one alternative, but not by others; and, on the other hand, it could
be the case that some fact refutes (i.e., contradicts) defeasibly one alternative, but
not others. For example, suppose we know that Richard is quaker or republican, but
we know that he is militarist (our factual information); then the alternative where
Richard is republican is more explicative than the alternative where he is quaker for
two reasons: a) because republicans are usually militarist, hence the facts confirm
that Richard is republican; and b) because quakers are usually not militarist, hence
the facts refute that Richard is quaker. In order to formalize the notion we will first
establish a weak preference and then a stronger one.

Definition 6.1 We say that a plausible alternative α is at least as explicative as a
plausible alternative β, in symbols, α � β, iff at least one of the following sentences
is true:

• For some fact φ ∈ K, φ is defensible in 〈KG ∪ {α},∆〉 but it is not defensible in
〈KG ∪ {β},∆〉.

• For some fact φ ∈ K, ¬φ is defensible in 〈KG ∪ {β},∆〉 but it is not defensible in
〈KG ∪ {α},∆〉.

The definition states a comparison between two hypothetical systems with the same
general context, and where the only particular information in one of them is α while
in the other one is β. Then α is at least as explicative as β iff for some fact φ, either
φ is predicted or explained in α’s system but not in β’s system, or β’s system predicts
¬φ which is refuted by the fact φ.

Lemma 6.2 The relation � is a weak order (reflexive, transitive and complete) over
the set of all the alternatives of any system SAS.

A stronger preference relation is the following:

Definition 6.3 We say that a plausible alternative α is more explicative than an
alternative context β, in symbols, α . β, iff α� β and β 6 �α.

Now, since the relation . determines chains of plausible alternatives, we have to
take only the maximal elements of those chains as the preferred, most explicative
alternatives.

40 Disjunctions and Specificity in Suppositional Defeasible Argumentation

Definition 6.4 A plausible alternative α in SAS is explicatively preferred iff, for all
β, if β is a plausible alternative in SAS then β 6 .α, i.e., α is a maximal element
w.r.t. ..

Example 6.5 In example 3.4, both penguin(Opus) and penguin(Tweety) are explica-
tively preferred, since the fact bird(Tweety) is defensible in 〈KG∪ {penguin(Tweety)},
∆〉 but not in 〈KG∪ {penguin(Opus)},∆〉 (i.e., penguin(Tweety)�penguin(Opus)),
and the fact bird(Opus) is defensible in 〈KG∪ {penguin(Opus)},∆〉 but not in 〈KG∪
{penguin(Tweety)},∆〉 (i.e., penguin(Opus) � penguin(Tweety)). Hence, neither
alternative has more explicative power than the other.

6.2 Defeat

Finally, we are in conditions of giving a precise meaning to ‘defeat’. We consider that
a defeater must attack and to be preferred (in a general sense) to some subargument of
the defeated argument. In SAS, and following Simari & Loui, this can be implemented
through specificity, but also taking on account the explicatively preferred alternatives.
Hence the attack relation is defined as follows:

Definition 6.6
We say that an argument 〈Def1, Sup1, σ〉 attacks an argument 〈Def2, Sup2, θ〉 in
〈K,∆〉 iff

1. Sup1 ⊆ Sup2 or Sup1 contains only explicatively preferred alternatives, and
2. K ∪ {σ, θ} ` ⊥.

Definition 6.7 We say that an argument arg1 defeats an argument arg2 iff for some
subargument arg of arg2 it is true that

1. arg1 attacks arg, and
2. arg1 is strictly more specific than arg.

6.3 Some interesting examples

This section provides some interesting examples. The first is the following13. Suppose
that a boy, John, believes that girls are romantic or pragmatic, that romantic girls
tend to like roses, that pragmatic girls usually do not like roses, and that girls who
like romantic movies tend to be romantic. Then he believes that Mary likes romantic
movies and, of course, she is romantic or pragmatic. Suppose that John wishes to
seduce Mary, it would be a good decision to get her roses for his purpose? Let us
represent John’s beliefs as follows:

Example 6.8

K = {romantic(Mary) ∨ pragmatic(Mary),¬lrmovies(Mary)}
∆ = {romantic(x)>−−lroses(x),

pragmatic(x)>−−¬lroses(x),
¬lrmovies(x)>−−¬romantic(x)}

13Provided by Rodrigo Moro in personal communication.

6. HOW CASE ARGUMENTS INTERACT 41

where the meaning of predicates is:
pragmatic(x): x is pragmatic;
romantic(x): x is romantic;
lrmovies(x): x likes romantic movies;
lroses(x): x likes roses.
The query is: Does Mary like roses?
The following arguments can be derived:

arg1 = 〈{romantic(Mary)>−−lroses(Mary)}, {romantic(Mary)},
lroses(Mary)〉

arg2 = 〈{pragmatic(Mary)>−−¬lroses(Mary)}, {pragmatic(Mary)},
¬lroses(Mary)〉

arg3 = 〈{¬lrmovies(Mary)>−− ¬romantic(Mary)}, {romantic(Mary)},
lrmovies(Mary)〉

arg4 = 〈{¬lrmovies(Mary)>−−¬romantic(Mary)}, {pragmatic(Mary)},
lrmovies(Mary)〉

arg5 = 〈{¬lrmovies(Mary)>−− ¬romantic(Mary),
pragmatic(Mary) >−− ¬lroses(Mary)}, {}, ¬lroses(Mary)〉

Argument arg5 is justified in concluding tentatively that Mary does not like roses.
Note that the alternative pragmatic(Mary) is explicatively preferred, while roman-
tic(Mary) is not, because ¬lrmovies(Mary) confirms the first (see arg4) and refutes
the later (see arg3).

The following example is similar to example 6.8, but here we consider cars. Our
context contains the following beliefs: Fiats are Italian and tend not to be fast, even
when Italian cars tend to be fast; Jaguars are de luxe and tend to be fast; de luxe cars
tend not to be Italian; car c is known to be a Fiat or a Jaguar, and it is known to be
de luxe. Is c fast or not? This benchmark problem is formally expressed as follows:

Example 6.9

K = {fiat(x) → italian(x),
jaguar(x) → deluxe(x),
f iat(c) ∨ jaguar(c),
deluxe(c)}

R = {fiat(x)>−−¬fast(x),
jaguar(x)>−−fast(x),
deluxe(x)>−−¬italian(x),
italian(x)>−−fast(x)}.

The only founded argument we can form to answer the query is for ‘c is fast’. This
argument, which uses all the information in K, is:

arg1 = 〈{deluxe(c)>−−¬italian(c), jaguar(c)>−−fast(c)}, {}, fast(c)〉

(since c is a de luxe car, it is believed not to be Italian; if c is believed not to be
Italian, then it is believed not to be a Fiat; if c is believed not to be a Fiat, then
it is believed to be a Jaguar, because c is a Fiat or a Jaguar; since Jaguars tend to

42 Disjunctions and Specificity in Suppositional Defeasible Argumentation

be fast, then c is believed to be fast). Note that deluxe(c) confirms jaguar(c) and
refutes fiat(c). jaguar(c) is explicatively preferred but fiat(c) is not, so fast(c) is
warranted.

Our system also allows to argue with suppositional non-case arguments, that is,
defeat may be established over arguments on purely hypothetical grounds. For ex-
ample, assuming that d is a car within the above domain and context, we can argue
hypothetically as follows:

arg2 = 〈{fiat(d)>−−¬fast(d)}, {fiat(d)}, ¬fast(d)〉

(assuming d is a Fiat, d is believed not to be fast); moreover

arg3 = 〈{italian(d)>−−fast(d)}, {fiat(d)}, fast(d)〉

(assuming d is a Fiat, then it is Italian; hence d is believed to be fast). Even when
arg2 and arg3 are not case arguments (hence non-contextually relevant, since fiat(d)
does not belong to any minimal model), by assuming d is a Fiat we can conclude that
it is not fast, since arg2 defeats arg3 because of specificity.

Let us see one more example of how contrapositive reasoning is used on defeasible
grounds. The example is that referred in Section 3.1, page 30, about Peter’s car.

Example 6.10 (Peter’s car).

K = {fiat(p) ∨ ferrari(p),
tourism(p)};

∆ = {fiat(x)>−−tourism(x),
fiat(x)>−−¬fast(x),
ferrari(x)>−−sport(x),
ferrari(x)>−−fast(x),
sport(x)>−−¬tourism(x)}.

The following arguments can be derived:

arg1 = 〈{sport(p)>−−¬tourism(p), ferrari(p)>−−sport(p)}, {}, ¬ferrari(p)〉,

arg2 = 〈{sport(p)>−−¬tourism(p), ferrari(p)>−−sport(p)}, {}, f iat(p)〉,

arg3 = 〈{sport(p)>−−¬tourism(p), ferrari(p)>−−sport(p), f iat(p)>−−¬fast(p)}, {},
¬fast(p)〉,

arg4 = 〈{ferrari(p)>−−fast(p)}, {ferrari(p)}, fast(p)〉,

Since here fiat(p) is explicatively preferred but not ferrari(p) (on basis of tourism(p)),
arg4 is refuted at its supposition by the contrapositive argument arg1. Hence, arg1
becomes justified, and in two more steps (arg2 and arg3), ¬fast(p) is obtained, which
turns out to be defended.

7. PROPERTIES OF SAS 43

7 Properties of SAS

The following are properties that Pollock [12] proved for his system, and we will show
that they are also true for SAS. In fact, both systems are similar in so far as we also
take into account suppositional reasoning for the construction of arguments. Never-
theless, we made a different approach to defeat, getting very different behaviors (see
the discussion in Section 8). Our results will show that the approach we made is
conformed to such properties. The first and second properties we will prove, to wit,
consistency and deductive closure of the set of defensible sentences, have a general
interest. The deduction theorem, as we will formulate it, arises because of the va-
lidity of conditionalization, and its importance lies in the fact that non-suppositional
systems cannot often justify a material conditional without justifying its consequent.
Reasoning by cases is also demonstrated on basis of the capability to introduce suppo-
sitions. Another obvious but not less important property is non-monotonicity, which
is shown in almost all the examples in this paper.

Theorem 7.1 (Consistency) The set of all the defensible sentences in any system
〈K,∆〉 is consistent.

Proof. Let S be the set of all the defensible sentences in 〈K,∆〉. If σ ∈ S, then σ
is supported by a justified founded argument arg. Suppose by the absurd that there
exists σ′ ∈ S such that σ′ is inconsistent with σ, but it is supported by a justified
founded argument arg′. Then there exists an m such that for all n > m, arg and
arg′ are level-n S-arguments. This implies that there are no level-(n−1) I-arguments
attacking arg or arg′ (so neither arg nor arg′ are level-(n − 1) I-arguments, since
they attack each other). Then arg and arg′ are level-n I-arguments. But being both
mutual attackers, this implies that neither arg nor arg′ are level-(n+1) S-arguments.
Contradiction. Then σ′ is not supported by a justified founded argument, or σ′ and
σ are not inconsistent together; both alternatives imply that the set of defensible
sentences of the system is consistent.

Theorem 7.2 (Deductive closure) For any set S ⊂ L of defensible sentences in a
system 〈K,∆〉, if S ` τ then τ is defensible in 〈K,∆〉.
Proof. Let S = {σ1, . . . , σn} be any set of defensible sentences in 〈K,∆〉, such that
S ` τ . By hypothesis we have that there exist some justified founded arguments
〈Def1, {}, σ1〉, . . . , 〈Defn, {}, σn〉, and by Deduction 〈Def1 ∪ . . . ∪ Defn, {}, τ〉 ∈
[[K]]. Let’s call this argument arg. Suppose by the absurd that arg is not justified in
〈K,∆〉. That is, there is not m such that for all n > m, arg is a level-n S-argument.
This implies that for any m there will ever be some k > m such that there is a
level-k I-argument arg′ attacking arg. This leads to a dilemma: (a) the conclusion
of arg′ is inconsistent with τ ; or (b) the conclusion of arg′ is inconsistent with the
conclusion of some proper subargument of arg. If case (a) is true, then the conclusion
of arg′ is inconsistent with S, which implies that some sentence in S is not defensible,
and this is contradictory with the hypothesis. If case (b) is true then, since arg is
an immediate conclusion of {〈Def1, {}, σ1〉, . . . , 〈Defn, {}, σn〉}, the conclusion of
arg′ is inconsistent with some subargument of 〈Def1, {}, σ1〉 or. . . or 〈Defn, {}, σn〉.
This implies that some of those arguments are not justified and, again, some of the
sentences σ1, . . . , σn in S are not defensible, which contradicts the hypothesis. Hence,
arg is justified in 〈K,∆〉 and τ is defensible.

44 Disjunctions and Specificity in Suppositional Defeasible Argumentation

Theorem 7.3 (Deduction) If 〈Def, Sup∪{τ}, σ〉 is justified in a system 〈K,∆〉, then
〈Def, Sup, (τ → σ)〉 is justified in 〈K,∆〉.
Proof. Let 〈Def, Sup ∪ {τ}, σ〉 be justified in the system 〈K,∆〉. By Cond we
have 〈Def, Sup ∪ {τ}, σ〉 ‖− 〈Def, Sup, τ → σ〉. By hypothesis, there is an m such
that for all n > m, there are no level-n I-arguments attacking a subargument of
〈Def, Sup ∪ {τ}, σ〉, and since 〈Def, Sup, (τ → σ)〉 has the same defeasible support,
no one of its subarguments is attacked by an I-argument. Thus, 〈Def, Sup, (τ → σ)〉
is justified.

Theorem 7.4 (Reasoning by cases) If (τ ∨ υ) is defensible and some arguments
〈Def1∪{τ>−−σ}, {τ}, σ〉 and 〈Def2∪{υ>−−σ}, {υ}, σ〉 are justified in a system 〈K,∆〉,
then σ is defensible in 〈K,∆〉.
Proof. Let 〈Def1 ∪ {τ>−−σ}, {τ}, σ〉 and 〈Def2 ∪ {υ>−−σ}, {υ}, σ〉 be justified in a
system 〈K,∆〉. Then, by the deduction theorem, 〈Def1 ∪ {τ>−−σ}, {}, τ → σ〉 and
〈Def2∪{υ>−−σ}, {}, υ → σ〉 are also justified, hence τ → σ and υ → σ are defensible.
Let now (τ ∨υ) be defensible in 〈K,∆〉. Then, by deductive closure σ is also defensible
in 〈K,∆〉.

A final remark that may be important for some readers of this journal: SAS is
often not complete for defensible sentences, and it is desirable that this be so. As
in most of the formalisms of its sort, we intended to capture in SAS the idea that
sometimes it is intuitive to remain sceptic about both one belief and its negation. A
canonical example of this is the “republican-quaker diamond”, where there are prima
facie reasons to believe that quakers are pacifist and republicans are non-pacifist, and
some individual n is known to be both republican and quaker; so, neither belief about
n’s pacifism nor her/his non-pacifism is defensible.

8 Comparison with related work

In this section we discuss similarities and differences between our system and related
work. In the first place we discuss the two main sources of inspiration for our approach,
to wit, the systems by Pollock (we shall refer to his 1990 version) and Simari & Loui
[25]. Later we shall discuss the respective approaches by Delgrande et al. [2], Geffner
et al. [4] and Shu [24] to the problem of reasoning by cases with default reasons.

Pollock

We take from Pollock’s OSCAR the structure for suppositional arguments, and the
notion of warranted sentences (through a reformulation by Simari-Loui of the idea of
levels of arguments) for our definition of defensible sentences14. The logical properties
that Pollock proves for his system are also true for SAS (see Section 7).

Among the differences, Pollock usually takes prima facies reasons as having a
strength depending on probabilities (cf. the notion of “statistical syllogism” in Pollock
[12], p. 80), while we are not interested in how evidence could justify our defeasible
rules. We assume (following Simar-Louis, Poole, Reciter, and most of the people in

14In Pollock [16], the author gives up his notion of warrant based on levels, studying justification through a more

abstract idea of defeat. The levels-approach results appropriate for our more concrete definition.

8. COMPARISON WITH RELATED WORK 45

the non-monotonic reasoning community) that defeasible rules are all equally strong,
and their acceptance quite depends on the agent’s beliefs. We think that this is more
appropriate for representing human beings’ defeasible reasoning, since human beings
seldom use probabilities for common sense reasoning.

Nevertheless, we consider that the most important difference lies in the treatment
of the key benchmark problems we analyzed. The reason is our introduction of case
arguments and its interaction, while in OSCAR there are not considerations to the
relevance of suppositional arguments.

Simari and Loui
From Simari & Loui’s system we adopted the incorporation of the defeasible support
(i.e., the set of defeasible rules used in a defeasible proof) into the argument structure,
which is a key for the comparison among arguments. As their system, ours takes speci-
ficity as a preference criterion, and defeat is based on that preference. On the other
hand, Simari & Loui’s system is not suppositional and arguments support literals as
their conclusion, but not arbitrary formulae. This is because the motivation involves
a computational implementation of the formalism, while we just focus on logical and
philosophical aspects of defeasible reasoning beyond computability. Simari & Loui’s
system is not designed for dealing with disjunctive information (which would lead to
too complex and maybe intractable computations), so its behavior in presence of such
an information is not intuitive.

Delgrande, Schaub and Jackson

The approach by Delgrande, Schaub and Jackson [2] has a similar behavior to ours
(Poole’s Theorist [18]), a system demonstrated equivalent to this we are reviewing,
leads also to similar behaviors.) The approach is an alternative to Reiter’s default
logic [22], called prerequisite-free default logic (PfDL). It consists in a translation of
every default α:β

γ into :(α⊃γ)∧β
(α⊃γ) . This translation obviates the need to prove the

antecedent for the application of a default, so the default can be used as a material
conditional if that conditional satisfies the usual consistency requirements. PfDL gets
reasoning by cases and contrapositive reasoning. Using semi-normal defaults (i.e.,
defaults where the formula by the right side of ‘:’ entails logically the conclusion)
contrapositive reasoning can be blocked. For example, the default theory (where S
stands for ‘student’, A for ‘adult’, and E for ‘employed’):

({
: S(x) ⊃ A(x)
S(x) ⊃ A(x)

,
: (A(x) ⊃ E(x)) ∧ ¬S(x)

(A(x) ⊃ E(x))
,
: S(x) ⊃ ¬E(x)
S(x) ⊃ ¬E(x)

}
, {S(a)}

)

has one extension: Th({A(a), S(a),¬E(a)}) (cf. Delgrande et al., [2] op. cit., p.
192). In the second default, the instantiation in a of ¬S(x) blocks the derivation of
A(a) ⊃ E(a); hence, even when ¬E(a) is derived by the third default, ¬A(a) cannot
be derived.

This situation cannot be accomplished using prerequisite-free normal defaults (i.e.,
those of the form :α

α). In the above example, using the default :A(x)⊃E(x)
A(x)⊃E(x) in place

46 Disjunctions and Specificity in Suppositional Defeasible Argumentation

of the second one we get two additional extensions: Th({A(a), S(a), E(a)}) and
Th({¬A(a), S(a),¬E(a)}), neither of which is intuitive (cf. ibid., p. 191). A semi-
normal default is required to specify that adults which are students are normally not
employed. Confront this with our approach, where we do not need to specify excep-
tions into the defeasible rules. We get the same intuitive behavior by setting that
scenario within the following (simpler) representation:

〈K = {S(a)},∆ = {S(x)>−−A(x), A(x)>−−E(x), S(x)>−−¬E(x)}〉.

Note that ¬E(a) is defensible because the argument

〈{S(a)>−−¬E(a)}, {},¬E(a)〉

is more specific than

〈{S(a)>−−A(a), A(a)>−−E(a)}, {}, E(a)〉.

Moreover, ¬A(a) is not defensible because the contrapositive argument

〈{S(a)>−−¬E(a), A(a)>−−E(a)}, {},¬A(a)〉

is defeated by the more specific argument

〈{S(a)>−−A(a)}, {}, A(a)〉.

There exist obvious differences between default, extension-based approaches and
argument-based systems. Beyond that, we argue that our approach offers a simpler
mode of representation with regards to the pursued intuitions, since we do not have
to use constraints to state non-applicability of rules. Our system simply yields argu-
ments, and the interaction mechanisms determine what is defensible. On the other
hand, it is not possible to express suppositional reasoning in Delgrande et al.’s [2]
approach (neither in Poole’s). A remaining difference is that no preference among
disjuncts is considered there.

Geffner, Llopis and Méndez

Geffner, Llopis and Méndez [4] give the approach to disjunctive information in default
reasoning to which our system is philosophically more related. They propose a seman-
tics and a proof-theory for constrained default theories with disjunctions. A priority
among defaults is established in the theory, which makes the first difference with our
system where defeasible rules are not compared, but arguments are. The authors de-
fine structures 〈I, ν〉, called ‘vivid interpretations’, where I is an interpretation of the
default theory and ν is a selection function that selects an atom from each disjunction
of the theory that has to be satisfied by I. The approach states a preference criterion
over such structures, preferring those vivid interpretations which are minimal mod-
els of the theory (the facts and the conclusions of applicable defaults) together with
the possible facts selected by ν. The proof-theory is implemented through a set of

9. CONCLUSION 47

inference rules that allow reasoning by cases and contrapositive reasoning, and it is
proved to be sound and complete in relation to the above semantics.

We use a selection function ν similar to that in the formalism by Geffner et al.
[4], but we use it to state which suppositions are plausible, i.e., make an argument
contextually relevant. The authors emphasize a semantical description of the theory
and how that can be captured by a sound and complete proof-procedure. On the
other hand, we are mainly interested in the problem of argument interaction, as it
is usual in the argument systems line of research. We agree with Geffner et al. [4],
moreover, at the intuition that a case may be refuted by the evidence.

Shu

Hua Shu [24] proposes a system of distributed default reasoning, that is, a system
based on default logic which satisfies the property of distribution: C(T ∪X)∩C(T ∪
Y) ⊆ C(T ∪ (X ∨ Y)) (where C() is a consequence operation, T,X, Y ⊂ L, and
X ∨ Y = {(x ∨ y) : x ∈ X and y ∈ Y }). This property implies that reasoning by
cases is valid. The idea is to interpret a disjunction X ∨ Y as a collection of cases
called “information frame”: {{X}, {Y }, {X,Y }}. Each case is a “coherent set” (no
contradiction is contained) that gives a partial description of the information frame.
Each description is extended by applying defaults. The intended conclusion of a
reasoning by cases with defaults is contained in the intersection of all the resulting sets.
Shu’s approach satisfies semi-monotonicity and cumulativity with normal defaults,
and also commitment to assumptions with non-normal defaults. These properties are
not within the scope of our system.

As distinguished from our results, Shu’s approach, as well as Reiter’s (standard)
default logics, cannot validate contrapositive reasoning. Maybe the author disagrees
about the intuition of that form of reasoning, which is not discussed in his work.

9 Conclusion

Dealing with disjunctive information has been difficult since the beginning of the study
of defeasible argumentation in Artificial Intelligence. One aspect of this difficulty is
computational, but other is logical and philosophical. We have argued here that the
way of solving the last is through suppositional reasoning. First we introduced a
suppositional argument system, SAS, which can express arguments with disjunctive
information, such as dilemmas or reasoning by cases. The main aspects of SAS are
essentially similar to Pollock’s OSCAR.

Using SAS we have studied how disjunctive information can improve the rationality
of a debate, determining whether that information gives relevance to suppositional
arguments or not. The solution was given by considering, from a semantical view,
the minimal models of the context, which indicate which suppositions are plausible
as alternatives, and determining which arguments are contextually relevant. From a
syntactical view, the solution was to translate the context formulae in their disjunctive
normal form, and establishing a preference among all the possible disjuncts; this
allowed to define case arguments. As a result, an equivalence between contextually
relevant arguments and case arguments was obtained (proposition 5.10).

Also a preference relation among plausible alternative was introduced through a

48 Disjunctions and Specificity in Suppositional Defeasible Argumentation

notion of explicative power. Only explicatively preferred arguments can compete for
justification in SAS, and that competence is established on the criterion of specificity.
That was possible because specificity can be adapted to SAS in a natural way, being
suppositional reasoning a proper part of the idea. We also emphasize on the emergent
capability of the system for arguing contrapositively. This is usually problematic in
defeasible argumentation, but we have captured behaviors that previously were seldom
achieved in defeasible reasoning.

Acknowledgments

I am grateful to Fernando Tohmé for his very interest in my work and his valuable
help and critics. Lots of thanks to him. Héctor Geffner and Henry Prakken are
acknowledged for comments and suggestions on earlier ideas for this work (through
discussions held while they were teaching in Bah́ıa Blanca). I also wish to thank Jorge
Roetti, Guillermo Simari and Juan Manuel Torres for their support. An anonymous
referee is acknowledged for constructive criticisms that have notoriously improved
this paper. This research was partially supported by Secretaŕıa de Ciencia y Técnica,
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina (Expte. SGCyT 1737-98).

References

[1] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming, and n-person games. Artificial Intelligence, 77: 321-357, 1995.

[2] J. Delgrande, T. Schaub and W. K. Jackson. Alternative approaches to default logic, Artificial
Intelligence, 70: 167-237, 1994.

[3] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of Np-
completeness. W. H. Freeman & Co., 1979.

[4] H. Geffner, J. Llopis and G. Méndez. Disjunctive facts in causal default reasoning. Proc. of
IBERAMIA-94, Lisboa, 1994.

[5] R. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law, 4 (3-4):
275-396, 1996.

[6] H. Kyburg. The Logical Foundations of Statistical Inference. Reidel, Dordrecht, 1974.

[7] F. Lin and Y. Shoham. Argument systems: a uniform basis for nonmonotonic reasoning. Proc. of
the First International Conference on Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann, San Mateo, CA, 245-255, 1989.

[8] R. Loui. Defeat among arguments: a system of defeasible inference. Computational Intelligence
2: 100-106, 1987.

[9] J. Minker. On indefinite data bases and the closed world assumption. Proc. of the 6th Conference
on Automated Deduction, 292-308, 1982.

[10] S. Parsons, C. Sierra and N. Jennings. Agents that reason and negotiate by arguing. Manuscript,
1998 (to appear in Journal of Logic and Computation).

[11] J. Pollock. Defeasible reasoning. Cognitive Science 11: 481-518, 1987.

[12] J. Pollock. Nomic probability and the foundations of induction. Oxford University Press, New
York, 1990.

[13] J. Pollock. A theory of defeasible reasoning. International Journal Of Intelligent Systems 6:
33-54, 1991 (a).

[14] J. Pollock. Self-defeating arguments. Minds And Machines 1: 367-392, 1991 (b).

[15] J. Pollock. How to reason defeasibly. Artificial Intelligence 57: 1-42, 1992.

[16] J. Pollock. Justification and defeat. Artificial Intelligence 67: 377-407, 1994.

[17] D. Poole. On the comparison of theories: preferring the most specific explanation. Proc. of the
Ninth IJCAI, Los Altos, 144-147, 1985.

9. CONCLUSION 49

[18] D. Poole. A logical framework for default reasoning. Artificial Intelligence 36 (1): 27-48, 1988.

[19] D. Poole. The effect of knowledge on belief: conditioning, specificity and the lottery paradox in
default reasoning. Artificial Intelligence 49: 281-307, 1991.

[20] H. Prakken. Logical tools for modeling legal arguments. Doctoral dissertation, Vrije Universiteit,
Amsterdam, 1993.

[21] H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal rea-
soning. Artificial Intelligence and Law 4(3-4): 331-368, 1996.

[22] R. Reiter. A logic for default reasoning. Artificial Intelligence 13: 81-132, 1980.

[23] N. Rescher. Dialectics: a controversy-oriented approach to the theory of knowledge. State Uni-
versity of New York Press, Albany, 1977.

[24] H. Shu. Distributed Default Reasoning. Linköping Studies in Science and Technology, Disserta-
tion No. 41, 1996.

[25] G. Simari and R. Loui. A mathematical treatment of defeasible reasoning. Artificial Intelligence
53: 125-157, 1992.

[26] G. Simari and C. Delrieux. Combinando plausibilidad y razonamiento revisable. Proc. of the 23
Jornadas Argentinas de Informática e Investigación Operativa, SADIO, Buenos Aires, 99-110,
1994.

[27] D. Sperber and D. Wilson. Relevance. Communication and cognition. Basil Blackwell, Oxford,
1986.

[28] F. Tohmé. Negotiation and defeasible reasons for choice. In Proceedings of the AAAI Stanford
Spring Symposium on Qualitative Preferences in Deliberation and Practical Reasoning, 95-102,
1997.

[29] S. Toulmin. The uses of argument. Cambridge University Press, London, New York, 1958.

[30] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumenta-
tion stages. Presented at the Computational Dialectics Workshop, June 3-7 1996, Bonn.
Published as report SKBS/B3.A/96-01. Full text available at the World-Wide Web at
http://nathan.gmd.de/projects/zeno/fapr/programme.html.

[31] G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence 90: 225-279, 1997.

Received 27 October 2000. Revised 10 January 2002

A General Framework for
Pattern-Driven Modal Tableaux

LUIS FARIÑAS DEL CERRO and OLIVIER GASQUET
IRIT - Universit Paul Sabatier, 118 route de Narbonne,
Toulouse Cedex 04, France. E-mail: {farinas, gasquet}@irit.fr.

Introduction

Following Kripke, tableau rules should be designed in order to propagate formulas
in a tree so that it simulates the properties of a Kripke model, which is not simply
a tree, but has additional features. E.g., a tree with the S4 rule “if 2A is present
in some node then transport it into all successors” should behave as if the tree were
transitive.

In the standard approach the propagation of formulas is only top-down; moreover,
using only trees as underlying structures is too restrictive: it is difficult to design
tableaux methods for some logics like those based on a density axiom (3p → 33p)
or on a confluence axiom (32p → 23p); this seems to indicate that trees are not a
good basis for such properties.

We present here a new basis that is characterized by two ideas:

1. the propagation of formulas need not to be top-down,
2. the underlying structure need not to be a tree.

In [21, 15, 6, 20], the first idea has been investigated. Their work is intimately mixed
with another feature: the so called single-step rules. Such rules allow to propagate
formulas only from one node to one of its successors or predecessor in the tree. We
generalize this notion to “pattern-driven rules”: rules apply if some elementary pat-
tern in the mathematical structure has been matched.

Besides, we will show that while trees are a good basis for tableaux for many
usual modal logics (tableaux for systems K(D)(T)(4) are based on trees), they fail to
support in a comprehensive way confluent or dense relations for example, and bimodal
confluent systems too, i.e. systems which semantics is such that there may be several
paths from the root of the structure (the tableau under computation) to some given
world. This feature requires that the reasoning about the accessibility relation should
be separated from the reasoning about formulas. At least two main approaches may
be first considered:

• By the use of labels [21, 15, 6, 20, 12] where each possible world is associated with
a label (its path from the root, the set of all path may be considered as a spanning
tree of a graph) and an equationnal theory is needed in order to specify which
paths denote the same world.

• By the explicite use of the accessibility relation, as explored in [1, 2]; this turns out
to be a model-construction approach. But their work focuses on “grammar logics”

51L. J. of the IGPL, Vol. 10 No. 1, pp. 51–83 2002 c©Oxford University Press

52 A General Framework for Pattern-Driven Modal Tableaux

(multi-modal logics with axioms of the form [a1] . . . [an]p → [b1] . . . [bm]p) and
mainly study their connections with formal languages, thus excluding properties
like symmetry, euclideanness, confluence; moreover, it does not seem possible to
extend decidability results and decision procedures for a property like density in
their framework.

Our position (partially-explicit use of the accessibility relation), while being close to
that of Baldoni et al. is different at least because as long as possible, we do not
completely compute the accessibility relation: for example, we do not compute its
transitive closure but simulate it by propagation of formulas. We compute it only for
existential properties (one may find more examples in [3]) and handle properties they
cannot.
We argue that rooted directed acyclic graphs (rdag for short), which are dags hav-
ing a distinguished node called the root, are better suited. They allow to naturally
handle some properties that do not marry easily with tree structures (like confluence,
density, and also, permutation in the multi-modal case), while other properties (like
transitivity, symmetry, . . .) can still be handled by the propagation of formulas.
Moreover, we believe that discovering decision procedures for density and confluence
was possible at least because of the very intuitive aspects of our framework.

This leads us to identify two kinds of tableaux rules:

1. propagation rules
2. structural rules.

The former are formulated as “if in some node of such pattern there is such formula,
then propagate such formula (the same or another one)”, while the latter are “if there
is such pattern then add some new node(s) and edge(s)”.
They respectively correspond to two different families of axioms (relational proper-
ties):

• Propagation rules correspond to axioms T, 4, B and 5 (properties of reflexivity,
transitivity, symmetry and euclideanness, respectively);

• Structural rules correspond to axioms D, De and C (respectively properties of
seriality, density and confluence). Also, in section 3, we will investigate some
cases of bimodal logics with a permutation axiom.

What do we gain by this new perspective? It holds in a few words: simplicity,
naturality and modularity, both in the definition of a tableau calculus for a given
system and in its correctness proof. First, for the classical connectives as well as for
3, rules and correctness proof are common to all systems. There only remains the
case of structural rules, and of propagation rules for 2 that are treated in a really
simple, natural and modular way.

Generally speaking, a tableau is a structure (usually a tree, in our case it will be
an rdag) whose nodes are labelled by sets of formulas. The completeness proof of a
tableau method is in two main steps: the construction of a model from this structure,
and the verification that this model satisfies the formulas of the nodes (the so-called
Fundamental Lemma).

A General Framework for Pattern-Driven Modal Tableaux 53

The first step is usually done by adding new arrows to the structure, according to
the particular property of the accessibility relation of the logic under concern. For
example, for the system S4 the accessibility relation is reflexive and transitive. Hence,
given a tree (the underlying structure for S4), we must close it under reflexivity and
transitivity in order to make an S4-model of it. In other terms, we must characterize
when two nodes are related in the resulting closure. Then we can say that for a
given node x another node y will be accessible from x if there is an n ≥ 0 and
x0, . . . , xi, xi+1, . . . , xn such that x0 is x, xn is y and xi+1 is a child of xi in the
original tree. From this characterization of the closure of the initial tree under the
additional properties of the logic under concern, we can “read off” the rules to be
designed. Thus the rules will ensure the correct propagation of formulas, the proof
being very easy1. This gives naturality and simplicity. In addition, the rules that we
have obtained fit closely to the intuition.
Modularity is achieved since we obtain tableaux calculi whose completeness proofs
are neatly separated into three components:

1. the Relational Closure Lemma (lemma 1.5) where the properties of the closure
of an rdag under some relational properties are expressed in terms of the initial
rdag,

2. the Structural Lemma (lemma 1.7) where we check that the closure of an rdag

under some relational properties preserves some of its initial features (e.g. the
transitive closure of a confluent rdag yields a confluent relation, but not neces-
sarily an rdag),

3. the Box Lemma (lemma 1.11) where we check that whenever x and y are related
in the closure, and 2A ∈ x then the set of associated rules ensures that A was
transported into y.

The rest of the completeness proof is completely factorized. We also present a sound-
ness result for the tableaux calculi we define.

Then we address the decidability issues by introducing the notion of a kernel. For
each logic we are intested in, we identify those finite structures that can simulate
infinite ones: e.g. it is well-known that kernels for KD4 are finite trees. as a result we
obtain for KD4 plus confluence, and KD4 plus density, new semantical characteriza-
tions, and as a consequence, we obtain a PSPACE upper bound for the complexity of
satisfiability for these logics. We will go back to this in section 2.

For backgrounds about tableaux for modal logic, the reader may look at [8], [12],
[13], [15].

We will first concentrate on some basic monomodal and temporal logics, and in-
vestigate, in section 3, some cases of bimodal systems mixing temporal and modal
concepts.

1The correctness proof mainly consists of results of relational calculus.

54 A General Framework for Pattern-Driven Modal Tableaux

At the end, some remarks are given on Lotrec which is a generic theorem prover
based on the notions presented in what follows and which allows to implement in a
friendly way many of the modal and temporal logics used in applications.

1 Complete tableaux for monomodal logics

1.1 Modal logics and relational properties

A modal logic can be specified syntactically or semantically. We recall what the links
between these presentations are.

The modal logics we consider are all obtained by extending the basic modal logic
K by one or several of the well-known axioms T, B, 4, 5, D, De (axiom of density:
3p → 33p) and C (axiom of confluence: 32p → 23p). Thus KDC4 denotes the
modal logic obtained by adding the axioms D, C and 4 to the basic system K.

With each of these axioms can be associated a relational property of the accessibil-
ity relation of the Kripke models:

Axiom Property Notation
T = 2p→ p reflexivity Ref

4 = 2p→ 22p transitivity Tr
B = 32p→ p symmetry Sym
5 = 32p→ 2p euclideanness Eucl

Group 1: Properties handled by propagation rules

Axiom Property Notation
D = 2p→ 3p seriality Ser

De = 3p→ 33p density Dens
C = 32p→ 23p confluence Conf

Group 2: Properties handled by structural rules

As a consequence of Sahlqvist’s theorem [24], a system based on K plus any com-
bination of these axioms is characterized by the Kripke models whose accessibility
relation satisfies the corresponding properties. Thus, KD4 is characterized by Kripke
models where the accessibility relation is both serial and transitive; for KT5 reflexiv-
ity and euclideanness are required (and, as a consequence, transitivity, seriality and
symmetry).

From now on we will indistinctly denote a modal system by KA1. . . An, where each
Ai belongs to group 1 or 2, or by a set ρ of its accessibility relation properties; we
will write ρ = ρ1∪ρ2 where ρ1 is a maximal subset of properties of group 1 (maximal
here means “including all those of group 1 which are a consequence of it”: thus,
symmetry and transitivity imply euclideanness: any set ρ1 that contain Sym and Tr
must also contains Eucl), and ρ2 is a subset of properties of group 2. E.g. KCD4 will
be denoted by {Ser,Tr ,Conf }, KDeB4 by {Sym,Tr ,Eucl ,Dens} (since euclideanness
is a consequence of transitivity and symmetry).

Definition 1.1 Given a set ρ of relational properties among group 1 and 2, a ρ-model
is a Kripke model whose accessibility relation satisfies ρ. A formula is ρ-satisfiable iff

1. COMPLETE TABLEAUX FOR MONOMODAL LOGICS 55

it is satisfiable in a ρ-model. It is ρ-valid iff it is valid in the class of all ρ-models,
this will be denoted |=ρ A. Thus A is a theorem of a system denoted by a set ρ of
properties iff it is ρ-valid.

1.2 Preliminaries and notations

The tableau calculi we are going to present are based on rdag (rooted directed acyclic
graphs) having additional properties; let ρ be the set of these additional properties,
we define:

Definition 1.2 A labelled ρ-rdag is a triple (N ,Σ,Φ) where:

• (N ,Σ) is a directed acyclic graph (dag), i.e. a directed graph that contains no
cycle, with a distinguished node called the root that can access every other node
in the transitive closure of Σ,

• (N ,Σ) satisfies all the properties of ρ,
• Φ is a function that associates additional information with each of the nodes: if x

is a node, Φ(x) is a set of formulas.

By abuse of notation and for the sake of notational economy, we will make no dis-
tinction between the nodes and their associated sets of formulas; thus we will write
A ∈ x instead of A ∈ Φ(x). Also by abuse of notation, we will sometimes denote a
ρ-rdag (N ,Σ) by the binary relation Σ. Thus we will make no distinction between
labelled structures and structures.

This notion also extend to graphs:

Definition 1.3 An rgraph is a graph that has a root, and a ρ-rgraph is a rgraph

that satisfies all properties of ρ.

As usual, Σ(x) will denote the set of nodes accessible from x by Σ: Σ(x) = {y ∈
N : (x, y) ∈ Σ}. Also, Σn will denote the pairs (x, y) such that there is a path of
length n between x and y. The diagonal relation: {(x, x):x ∈ N} will be denoted by
I and also by Σ0.

For the sake of clarity, we will use a diagrammatic representation for rdag. The fig-
ure below gives the intended meaning of those diagrammatic representations in which
the edges are implicitely left-to-right directed2:

r
S denotes a node S

S0 r S1r denotes (S0, S1) ∈ Σ

S0 r��PP
r

r

S1
S2 denotes (S0, S1), (S0, S2), (S1, S2) ∈ Σ

S0 r��
PP

r

r

S1

S2
denotes (S0, S1), (S0, S2) ∈ Σ

S0 r��
PP

r

r

S1

S2

PP
��rS3 denotes (S0, S1), (S0, S2), (S1, S3), (S2, S3) ∈ Σ

2Note that rdag are of course antisymmetrical.

56 A General Framework for Pattern-Driven Modal Tableaux

The last two diagrams do not involve any order between S1 and S2, e.g.

S0 r��
PP

r

r

S1

S2
can be represented as well by S0 r��

PP
r

r

S2

S1

1.3 Closure of rgraph

We define the following closure operation on rgraph:

Definition 1.4 Let Σ be an rgraph over a set N and ρ a set of relational properties
of group 1; the ρ-closure of Σ (denoted by Σρ) is the least rgraph that contains Σ
and which satisfies every property of ρ.

This ρ-closure always exists if the properties are among {Ref ,Tr ,Sym,Eucl}. A very
important point is that for properties of group 1, the closure can be expressed in
terms of the initial rgraph. E.g. the transitive closure of an rgraph Σ is defined
by: (x, y) ∈ ΣTr iff ∃n ≥ 1 such that (x, y) ∈ Σn (c.f. def A.1). Note that we do not
consider here properties of group 2: it makes no sense to talk about closure under a
property of group 2. This is the reason why they are handled in a different way: no
propagation rule can simulate them.

Lemma 1.5 (Relational Closure Lemma)
Let Σ be an rdag over a set N of nodes:

• (x, y) ∈ ΣRef iff (x, y) ∈ Σ or x = y.

• (x, y) ∈ ΣSym iff (x, y) ∈ Σ or (y, x) ∈ Σ.

• (x, y) ∈ ΣTr iff ∃n ≥ 1 such that (x, y) ∈ Σn.

• (x, y) ∈ ΣEucl iff (x, y) ∈ Σ or ∃u ∈ N ∃n ≥ 1 ∃m ≥ 1 such that (u, x) ∈ Σn and
(u, y) ∈ Σm.

• (x, y) ∈ ΣRef,Sym iff (x, y) ∈ Σ or x = y or (y, x) ∈ Σ.

• (x, y) ∈ ΣRef,Tr iff ∃n ≥ 0 such that (x, y) ∈ Σn.

• (x, y) ∈ ΣRef,Eucl iff ∃n ≥ 0 ∃x0 = x, . . . xi, xi+1, . . . , xn = y : (xi, xi+1) ∈ Σ or
(xi+1, xi) ∈ Σ.

• (x, y) ∈ ΣSym,Tr iff ∃n ≥ 1 ∃x0 = x, . . . xi, xi+1, . . . , xn : (xi, xi+1) ∈ Σ or
(xi+1, xi) ∈ Σ.

• (x, y) ∈ ΣTr,Eucl iff ∃u ∈ N ∃n ≥ 0 ∃m ≥ 1 such that (u, x) ∈ Σn and (u, y) ∈ Σm.

Proof. Straightforward consequence of the lemmas B.1 and B.3 of the appendix.

1. COMPLETE TABLEAUX FOR MONOMODAL LOGICS 57

Lemma 1.6 The remaining cases are reducible to those of the previous lemma:
• ΣSym,Eucl = ΣSym,Tr,Eucl = ΣSym,Tr

• ΣRef,Sym,Tr = ΣRef,Tr,Eucl = ΣRef,Sym,Eucl = ΣRef,Sym,Tr,Eucl = ΣRef,Eucl

Proof. Straightforward.

The above lemma will be a powerful tool for proving completeness: it will allow to
define a model for a formula from an open tableau. But this is not the whole story.
As we previously said, some properties are handled structurally; roughly speaking
seriality, density and confluence are treated by the underlying “kind” of rdag of
the tableaux. When in the completeness proof we must close the rdag under one or
several properties of group 1 (note that after this closure operation, the initial rdag is
no longer an rdag but an rgraph), we must also check that its structural properties
are preserved after this closure (i.e. that it is still of the same “kind”). E.g. we must
prove that the transitive closure of a confluent rdag is still confluent. This is the aim
of the lemma below:

Lemma 1.7 (Structural Lemma) Let ρ2 be a subset of group 2, ρ1 a subset of
group 1 and let Σ be a ρ2-rgraph over a set N of nodes. Then Σρ1 is also a ρ2-
rgraph and hence is a (ρ1 ∪ ρ2)-rgraph.

Proof. See appendix B.

1.4 Rewriting rdag

Usually, tableaux calculi consist in rewriting a structure by using some appropriate
set of rewriting rules (or simply rules). But before presenting our rules, we want to
propose some visual conventions; as usual, S,A denotes S ∪ {A}:

r
S =⇒ r

S, A

rewrite the node S into the node S ∪ {A}, i.e. add the formula A to the node S,

r
S =⇒ S r S1r

add the new node S1 to the successors of the node S,

S0 r S1r =⇒ S0, A r S1, Br

add the formula A to the node S0 and B to S1,

S0 r

S1
r r S2 =⇒ S0, A r

S1, B
r r S2, C

add the formula A to S0, B to S1 and C to S2,

S0 r��
PP

r

r

S1

S2
=⇒ S0, A r��

PP
r

r

S1, B

S2, C

add the formula A to S0, B to S1 and C to S2.
S0 r��

PP
r

r

S1

S2
=⇒ S0 r��

PP
r

r

S1

S2

PP
��rS3

add the new node S3 as a common successor of the node S1 and S2,

58 A General Framework for Pattern-Driven Modal Tableaux

S0 r S1r =⇒ S0 r��PP
r

r

S2
S1

add the new node S2 between S0 and S1.

This presentation allows to implicitly take into account constraints on the applicability
of rules: e.g. a rule such as

S0 r

S1, 2A
r r S2 =⇒ S0 r

S1, 2A
r r S2, 2A reads “add 2A to any successor of S1

if S1 has a predecessor and contains 2A”.

1.5 Rules

Here are the rules we need:

• Classical and 3 rules:

– Rule ⊥: r
A,¬A,S=⇒ r

A,¬A,⊥, S

– Rule ¬: r
¬¬A, S=⇒ r

¬¬A, A, S

– Rule ∧: r
A ∧ B, S=⇒ r

A ∧ B, A, B, S

– Rule ∨: r
¬(A ∧B), S=⇒ r

¬(A ∧ B), C, S

where C is one of ¬A and ¬B

– Rule 3: r
3A, S =⇒ 3A, S r Ar

• Propagation rules:

– Rule K: 2A, S r S1r =⇒ 2A, S r A, S1r

– Rule T : r
2A, S =⇒ r

2A, A, S

– Rule 4: S, 2A r S1r =⇒ S, 2A r S1, 2Ar

– Rule B: S r S1, 2Ar =⇒ S, A r S1, 2Ar

– Rule 5→: S r��
PP

r

r

S1, 2A

S2
=⇒ S r��

PP
r

r

S1, 2A

S2, 2A

– Rule 5↑: S r S1, 2Ar =⇒ S, 2A r S1, 2Ar

– Rule 5↓: S r

S1, 2A
r r S2 =⇒ S r

S1, 2A
r r S2, 2A

• Structural rules:

– Rule D: r
S =⇒ S r ∅r

1. COMPLETE TABLEAUX FOR MONOMODAL LOGICS 59

– Rule C: S0 r��
PP

r

r

S1

S2
=⇒ S0 r��

PP
r

r

S1

S2

PP
��r∅

– Rule C∗: S r S1r =⇒ S r

S1
r r ∅

– Rule De: S0 r S1r =⇒ S0 r��PP
r

r

∅
S1

Tableau rules

Of course, it may be discussed why not to consider rule 3 as a structural rule.
This decision is quite arbitrary, we consider that structural rules are those describing
an existential property of the accessibility relation, while rule 3 correspond to the
expression in the object language of the existence of objects. Thus, we will sometimes
consider rule 3 as a structural rule for convenience.

1.6 Tableau calculi

In order to define a tableau calculus for a system denoted by ρ1∪ρ2, we must associate
a set of rules with it. All the tableaux calculi we are going to define contain: the clas-
sical rules and the rule 3 plus the rule K (as these rules are common to all tableaux
calculi, we will henceforth omit them) plus none or some structural and propagation
rules.

A tableau calculus for a system denoted by (ρ1 ∪ ρ2) is obtained by taking (in
addition to classical, 3 and K rules) the rules corresponding to properties of (ρ1 ∪ ρ2);
this correspondance is given in the figure below.

Properties Rules
Group 1 Ref T Propagation

Sym B Rules
Tr 4
Eucl 5↑ 5↓ 5→

Group 2 Ser D Structural
Dens De Rules
Conf C C*

We define what we call naive tableaux, i.e. tableaux computed with no strategy,
particularly strategies ensuring termination. We will see such strategies in section 2.

Definition 1.8 A (naive) (ρ1 ∪ ρ2)-tableau for a formula A is the limit of a sequence
Υ0, . . . ,Υi,Υi+1, . . . where Υi = (Ni,Σi,Φi). It is the limit in the sense that N =⋃

i≥0Ni,Σ =
⋃

i≥0 Σi,Φ(x ∈ N) =
⋃

i≥0,x∈Ni
Φi(x).

In addition we must have:

• Υ0 is an rdag consisting of only one node whose associated set of formulas is {A},

60 A General Framework for Pattern-Driven Modal Tableaux

• Υi+1 is obtained from Υi by applying either a classical rule, or the 3 rule, or the
rule K, or a rule of (ρ1 ∪ ρ2)

• and in which every applicable rule has been applied once.

Definition 1.9 A tableau is closed if some node in it contains ⊥; it is open otherwise.
A formula is ρ1 ∪ ρ2-closed iff all its (ρ1 ∪ ρ2)-tableaux are closed 3.

Of course, as implicitely stated above, we make the usual assumption of fairness: if
at some iteration i, some rule is applicable then for some j ≥ i the rule has been
applied (Note that any applicable rule remains so until it has been applied). Thus,
saying that completeness and soundness rely on the fairness assumption consists in
saying that they only hold for fair algorithms. For example, an algorithm that would
apply rule (D) first (hence with a priority greater than that of other rules) would not
be fair since rule (D) may be applied infinitely giving no chance to apply any other
rule.

1.7 Completeness

In this subsection we prove the completeness of our tableaux calculi. We show how,
from a given open (ρ1 ∪ ρ2)-tableau for A we can construct a (ρ1 ∪ ρ2)-model for A.

Let Υ be an open (ρ1 ∪ ρ2)-tableau for A. Υ is a ρ2-rdag where Υ = (N ,Σ,Φ)
with root r, since structural rules corresponding to ρ2 ensure that Υ satisfies ρ2.

Now let µ = (W,R, τ) be the Kripke model defined as follows:

Definition 1.10

• W = N
• R is the ρ1-closure of Σ, i.e. R = Σρ1

• for all w ∈ W , w ∈ τ(p) iff p ∈ w (in fact iff p ∈ Φ(w)).

By construction, µ satisfies properties of ρ1 and, by the Structural Lemma (lemma
1.7), it also satisfies the properties of ρ2; hence it is a (ρ1 ∪ ρ2)-model. What remains
is to prove that it satisfies the formula A. We first establish the following important
lemma:

Lemma 1.11 (Box Lemma) Let Υ = (N ,Σ,Φ) be a (ρ1 ∪ ρ2)-tableau with root r.
Let x, y be such that (x, y) ∈ Σρ1 and 2A ∈ x; then A ∈ y.
Proof. There are nine cases, according to ρ1; we only prove the lemma for some of
the most complex cases (all involving euclideanness):

• ρ1 = {Eucl}: if (x, y) ∈ Σρ1 then by the Relational Closure lemma, we have either
(x, y) ∈ Σ and then A ∈ y (by rule K), or ∃u ∈ N ∃n ≥ 1 ∃m ≥ 1 such that
(u, x) ∈ Σn and (u, y) ∈ Σm . Hence we both have

3Due to the rule ∨, a formula may have several distinct tableaux.

1. COMPLETE TABLEAUX FOR MONOMODAL LOGICS 61

∃x0 = x, . . . , xi, xi+1, . . . , xn = u: (xi+1, xi) ∈ Σ; then 2A ∈ xi for 0 ≤ i ≤ n
(by rule 5↑ n times), in particular: 2A ∈ xn−1 and 2A ∈ xn = u.

and ∃y0 = u, . . . , yi, yi+1, . . . , ym = y: (yi, yi+1) ∈ Σ; hence 2A ∈ y1 (by rule 5→
since 2A ∈ xn−1) from which we get 2A ∈ yi for 1 ≤ i ≤ m (by rule 5↓ m− 1
times) and since also 2A ∈ xn = u = y0, we have 2A ∈ yi for 0 ≤ i ≤ m. Hence
A ∈ yi for 1 ≤ i ≤ m (by rule K), in particular A ∈ y.

• ρ1 = {Tr,Eucl}: if (x, y) ∈ Σρ1 then by the Relational Closure lemma, we have
∃u ∈ N ∃n ≥ 0 ∃m ≥ 1 such that (u, x) ∈ Σn and (u, y) ∈ Σm. This implies that:
∃n ≥ 0 ∃x0 = x, . . . , xi, xi+1, . . . , xn = u: (xi+1, xi) ∈ Σ; then 2A ∈ x0 implies
2A ∈ u (by rule 5↑, n times)

and ∃m ≥ 0 ∃y0 = u, . . . , yi, yi+1, . . . , ym+1 = y: (xi, xi+1) ∈ Σ; hence 2A ∈ u
implies 2A ∈ ym (by rule 4, m times) and A ∈ y (by rule K).

• ρ1 = {Sym, T r,Eucl}: if (x, y) ∈ Σρ1 then by the Relational Closure lemma, we
have ∃n ≥ 1 ∃x0 = x, . . . , xi, xi+1, . . . , xn = y: (xi, xi+1) ∈ Σ or (xi+1, xi) ∈ Σ;
but 2A ∈ x0 and 2A ∈ xi ⇒ 2A ∈ xi+1 (by rule 4 or 5↑, according to whether
(xi, xi+1) ∈ Σ or (xi+1, xi) ∈ Σ). Thus 2A ∈ xi for 0 ≤ i ≤ n and hence A ∈ xi

for 0 ≤ i ≤ n+ 1 (by rule K or B). Thus A ∈ y.

The following fundamental lemma brings us to the desired conclusion:

Lemma 1.12 (Fundamental Lemma) Let Υ be an open (ρ1 ∪ ρ2)-tableau for A,
let µ be the (ρ1 ∪ ρ2)-model defined as in definition 1.10 w.r.t. Υ and let B ∈
Subformulas(A) then: (i) if B ∈ x then µ, x |= B.

Proof. (By induction on the structure of B: W.l.o.g we can suppose that B is writ-
ten with only ¬, ∧, ⊥ and 2).

Induction initialization: let B be an atom; then (i) holds by definition of τ .

Induction step4:

• B cannot be ⊥, otherwise Υ would be closed.

• Let B be ¬¬C.
¬¬C ∈ x
⇒ C ∈ x (by rule ¬)
⇒ µ, x |= C (by IH)
⇒ µ, x |= ¬¬C.

• Let B be (C ∧D).
(C ∧D) ∈ x
⇒ C ∈ x and D ∈ x (by rule ∧)

4In this proof, when we say “by rule R” we mean “by rule R and by the fairness assumption that rule R has been

applied”.

62 A General Framework for Pattern-Driven Modal Tableaux

⇒ µ, x |= C and µ, x |= D (by IH)
⇒ µ, x |= (C ∧D).

• Let B be ¬(C ∧D).
¬(C ∧D) ∈ x
⇒ ¬C ∈ x or ¬D ∈ x (by rule ∨)
⇒ µ, x |= ¬C or µ, x |= ¬D (by IH)
⇒ µ, x |= ¬(C ∧D).

• Let B be ¬2C
¬2C ∈ x
⇒ there exists y such that (x, y) ∈ Σ and ¬C ∈ y (by rule 3)
⇒ there exists y such that (x, y) ∈ R, and µ, y |= ¬C (by IH and definition of R)
⇒ µ, x |= ¬2C.

• Let B be 2C and suppose (x, y) ∈ R = Σρ1 ; then by the Box Lemma (1.11),
C ∈ y. Then by IH, it comes µ, y |= C. Hence, µ, x |= 2C.

As a direct consequence of the previous lemma, we have:

Corollary 1.13 If A has a fair open (ρ1 ∪ ρ2)-tableau then A is (ρ1 ∪ ρ2)-satisfiable.
Hence our tableaux calculi are complete under the fairness assumption.

1.8 Soundness

In this subsection, we prove the soundness of our tableaux calculi: if a formula A
is (ρ1 ∪ ρ2)-closed then A is (ρ1 ∪ ρ2)-unsatisfiable. The technique we use for prov-
ing the soundness of our tableaux is simple. We prove that all rules preserve the
“satisfiability” of the pattern involved in its application. In our sense, a pattern is
(ρ1 ∪ ρ2)-satisfiable iff there exists a (ρ1 ∪ ρ2)-model that contains it and satisfies its
formulas. We formally develop this below.

Definition 1.14 Let Υ = (N ,Σ,Φ) be a labelled (ρ1 ∪ ρ2)-rdag and µ= (W,R, τ) be
a (ρ1 ∪ ρ2)-model; let h be a function such that h(N) ⊆W and ∀n1, n2 ∈ N : (n1, n2) ∈
Σ ⇒ (h(n1), h(n2)) ∈ R.

• h is called an embedding from Υ to µ (or h matches Υ to µ);

• µ satisfies Υ via h iff ∀n ∈ N :A ∈ Φ(n) ⇒ µ, h(n) |= A;

• µ satisfies Υ iff there exists an embedding h from Υ to µ such that µ satisfies Υ
via h.

Lemma 1.15 Let Υ =⇒ Υ′ be a rule of some set ρ (resp. Υ =⇒ Υ′ or Υ′′ for rule
∨); then if some ρ-model µ satisfies Υ then it satisfies Υ′ (resp. then it satisfies Υ′ or
Υ′′).

1. COMPLETE TABLEAUX FOR MONOMODAL LOGICS 63

Proof. If we suppose that µ satisfies Υ via some embedding h we just have to exhibit
an embedding h′ such that µ satisfies Υ′ via h′ (resp. such that µ satisfies Υ′ or Υ′′

via h′). This is done by analysing every rule. We only do it for the 3 rule, for one
structural rule and for one propagation rule. For classical rules, it is immediate: just
take h′ = h.

• Rule 3 : Υ = (N = {n0},Σ = ∅,Φ = {(n0,3A)}) rewrites into Υ′ = (N ∪
{n1},Σ ∪ {(n0, n1)},Φ ∪ {(n1, A)}).
If µ satisfies Υ via h then µ, h(n0) |= 3A, hence ∃y ∈ R(h(n0)):µ, y |= A; let y1
be such a y, and define h′(n1) = y1 and h′(n0) = h(n0). µ satisfies Υ′ via h′, since
(h′(n0), h′(n1)) ∈ R and µ, h′(n1) |= A.

• Rule De: Υ = (N = {n0, n1},Σ = {(n0, n1)},Φ = {(n0, S0), (n1, S1)}) rewrites
into Υ′ = (N ∪ {n2},Σ ∪ {(n0, n2), (n2, n1)},Φ ∪ {(n2, ∅)}).
If µ satisfies Υ via h then (h(n0), h(n1)) ∈ R, and since R is dense ∃z: (h(n0), z) ∈
R and (z, h(n1)) ∈ R. Let z2 be such a z and define h′(n2) = z2 and h′(n) = h(n)
for n 6= n2. µ satisfies Υ′ via h′, since (h′(n0), h′(n2)) ∈ R and (h′(n2), h′(n1)) ∈
R, and Φ(n2) = ∅.

For propagation rules, we just have to prove that we are done by taking h′ = h.

• Rule 5→: Υ = (N = {n0, n1, n2},Σ = {(n0, n1), (n0, n2)},Φ = {(n0, S0),
(n1, S1 ∪ {2A}), (n2, S2)}) rewrites into Υ′ = (N ,Σ,Φ ∪ {(n2,2A)}).
If µ satisfies Υ via h then µ, h(n1) |= 2A;
Also, since R is euclidean, we have:
µ, h(n0) |= 2(2A→ 22A) (valid formula of euclidean models)
⇒ µ, h(n1) |= 2A→ 22A (since (h(n0), h(n1)) ∈ R)
⇒ µ, h(n1) |= 22A (since µ, h(n1) |= 2A)
⇒ µ, h(n0) |= 322A (since (h(n0), h(n1)) ∈ R)
⇒ µ, h(n0) |= 22A (322A→ 22A is valid in euclidean models)
⇒ µ, h(n2) |= 2A (since (h(n0), h(n2)) ∈ R).

Corollary 1.16 If A is (ρ1 ∪ ρ2)-satisfiable then it has an open (ρ1 ∪ ρ2)-tableau.
Hence our tableaux calculi are sound.

Proof. If A is (ρ1 ∪ ρ2)-satisfiable by some world x of some (ρ1 ∪ ρ2)-model µ, then
its starting labelled rdag: ({n0}, ∅, {(n0, A)}) is satisfied by µ (via the embedding
h:n0 7→ x). Hence, at least one of its (ρ1 ∪ ρ2)-tableaux must be open since no closed
tableau is satisfiable by µ.

1 Extensions to other propertiesExtensions to other properties Our work extends
easily to other properties of group 1 (almost-reflexivity: ∀x(∃u: (u, x) ∈ R⇒ (x, x) ∈
R), almost-transitivity: ∀x, y, z, u ((x, y) ∈ R ∧ (y, z) ∈ R ∧ (z, u) ∈ R) ⇒ (y, u) ∈ R,
. . .). First complete the Relational Closure lemma (1.5) and then check that the
closure under this new property of a ρ2-rgraph is still a ρ2-rgraph (Structural
lemma). Then design one or several rules for this property e.g. for almost-reflexivity,
the natural rule such as:

64 A General Framework for Pattern-Driven Modal Tableaux

S0 r S1, 2Ar =⇒ S0 r S1, 2A, Ar

(it is obviously sound). Then prove that this/these rule(s) allow(s) to correctly prop-
agate formulas (Box lemma) with the help of the Relational Closure lemma.
For new properties of group 2 (like 3-density: (x, y) ∈ R⇒ ∃u, v: (x, u) ∈ R∧ (u, v) ∈
R∧ (v, y) ∈ R), one must first define the underlying structure (here 3-dense rgraph)
and extend the Structural lemma (if possible). Then designing a corresponding sound
structural rule is straightforward, and completeness is for free.

2 Terminating tableaux for K4.C and K4.De

As they are defined, naive tableaux may run infinitely. As an example, a {Ser,Tr}-
tableau for 23p runs infinitely because of rules (4) and (3) that apply infinitely. In
this case, of course, the nodes generated all contain the same formulas and thus the
tableau loops.

2.1 The kernel approach

The basic idea once completeness has been obtained to get a decision procedure is to
find for each logic a so-called family of “kernels”: a kernel is simply a finite structure
able to simulate the infinite tableaux obtained with a naive algorithm that would just
implement tableaux as presented above. In this sense, it is well-known that kernels for
S4 (i.e. KT4) are finite trees (since no rule makes two sibling nodes having a common
successor). We will show below that kernels for KD4.C are finite sequences of finite
lattices, and we will show a similar result for KD4.De.
We will focus on two characteristic systems, namely KD4.C and KD4.De, it is straight-
forward to lift the present results to systems without axiom D, or with axiom T (that
subsumes axiom De), and with both axioms C and De. But first, we will apply it to
KD4: nothing new will be stated, but this will help in understanding the sequel.

In what follows we will use some conventions and notations that are presented here:

1. Given a tableau Y = (N,Σ,Φ) and a rule (S) (among those that lead to add a
new node: (D), (3), (De), (C),. . .) we will denote by NS the set of nodes created
by applying this rule at some iteration, and dually, ΣS the set of edges created by
applying this rule;

2. For sake of simplicity, we decided to use bold-face symbols for those which concern
kernels, while naive tableau will be denoted by non-bold symbols (thus Y denotes
a naive tableau, while Y denotes a kernel).

2.2 Kernels for KD4

The set of rules that will be used is: all classical rules, and rules (D), (3), (K) and
(4). Kernels for KD4 are simply naive tableaux provided with a strategy that allows
to conclude that some tableau is open after only finitely many steps; this proves that
kernels for KD4 are finite trees. Let A be the starting formula, we get the following
non-deterministic (w.r.t. the order of application of the rules) algorithm that computes
a sequence (Y)i of rdag:
Starting from Y0 = (N0,Σ0,Φ0) where N0 only consists of one node r (the root), Σ0

2. TERMINATING TABLEAUX FOR K4.C AND K4.DE 65

is empty and Φ0 associate the formula A with r. Then compute Yi+1 = (Ni+1,Σi+1,
Φi+1) from Yi = (Ni,Σi,Φi) by applying successively each of the following steps:

1. Loop step: consider all nodes x ∈ Ni such that ∃y ∈ Ni and y is an ancestor of x
(i.e. (y, x) ∈ ΣTr

i) and Φi(x) ⊆ Φi(y) and set them as loop nodes ; (nodes that are
“contained” in one already present in the tree need not to be further developed)

2. Classical step: apply classical rules ((⊥), (¬), (∨), (∧)) on all nodes as much as
possible (also known as classical saturation: as usual, in a given node, a given
formula will be treated only once);

3. Structural step: apply rules (D) and (3) on each non loop node where they have
not been applied yet (As usual, rule (D) must be applied only once on each node
while rule (3) must be applied once for each formula 3B of each node.);

4. Propagation step: apply rules (K) and (4) as much as possible.

The above algorithm must be applied until for some i, either Yi is closed or Yi+1 = Yi

(i.e. there are loop nodes on each branch)5. As in the case of naive tableaux, the
tableau for A is said closed if all possible kernels for A are closed, it is open otherwise.

Theorem 2.1 The strategy given above is sound for KD4.

Proof. Straightforward since the resulting algorithm is a fair restriction of the naive
one which is sound.

For proving the completeness of this strategy, we need first to establish the following
lemma6:

Lemma 2.2 Let Y =< N,Σ,Φ > be a kernel of root r for A (obtained by the above
strategy) then there exists an naive tableau Y for A with Y =< N,Σ,Φ > of root r
and such that:

(♥) ∀x ∈ N : ∃u ∈ N
[Φ(x) ⊆ Φ(u) &
∀y ∈ N : ∃v ∈ N : ((x, y) ∈ Σ ⇒ ((u, v) ∈ Σ & Φ(y) ⊆ Φ(v))]

Proof. It is done by induction. Let

(♥i) ∀x ∈ Ni : ∃u ∈ N
[Φi(x) ⊆ Φ(u) &
∀y ∈ Ni : ∃v ∈ N : (x, y) ∈ Σi ⇒: ((u, v) ∈ Σ & Φi(y) ⊆ Φ(v))]

Induction base: True since Φ0(r) = {A} ⊆ Φ(r), and Σ0 = ∅.
Induction step: The induction hypothesis is (♥i), we examine the rule that may lead
from Yi to Yi+1

We only treat rules ⊥ and ∨, the other classical rules are simpler.

Rule (⊥): let us suppose that rule ⊥ may be applied to some node x of Ni, then
for some formula B, {B,¬B} ⊆ Φi(x) hence by IH: ∃u : {B,¬B} ⊆ Φ(u); thus
⊥ ∈ Φ(u), by rule (⊥).

5Since there are no backwards rules, rules (K) and (4) must be applied only in order to propagate formulas in new

nodes introduced at step 3.

6The whole completeness proof is standard (the reader may find details in [12] for example).

66 A General Framework for Pattern-Driven Modal Tableaux

Rule (∨): let Φi(x) = S,A∨B then by IH S ⊆ Φ(u) and A∨B ∈ Φ(u), hence by
rule (∨) C ∈ Φ(u) (for some C ∈ {A,B}); then we set7 Φi+1(x) = Φi(x) ∪ {C}
and (♥i+1) holds.
Rule (3): let Φi(x) = S,3A and suppose that applying rule (3) leads to introduce
y with Φi+1(y) = A and (x, y) ∈ Σi+1 then by IH: ∃u ∈ N : Φi(x) ⊆ Φ(u) ⇒
(∃u′ ∈ N : Φi(x) ⊆ Φ(u′) and u′ is not a loop node)
(since either u is not a loop node or it is a loop node but then there must be
another node u′ such that Φ(u) ⊆ Φ(u′)) ⇒ S ⊆ Φ(u′) and 3A ∈ Φ(u′)
⇒(by rule (3)) ∃v′ ∈ N : (u′, v′) ∈ Σ &A ∈ Φ(v′) ⇒ (♥i+1)
Rule (D): As for rule (3) but with Φi+1(y) = ∅
Rule (K) –resp. (4): let (x, y) ∈ Σi & 2A ∈ Φi(x); by IH ∃u, v ∈ N : Φi(x) ⊆
Φ(u) & Φi(y) ⊆ Φ(v) & (u, v) ∈ Σ, since 2A ∈ Φ(u), by rule (K) –resp.(4)–
A ∈ Φ(v) –resp. 2A ∈ Φ(v)–8.

Theorem 2.3 The strategy given above is complete for KD4.

Proof. The lemma 2.2 implies straightforwardly ∀x ∈ N : ∃u ∈ N : Φ(x) ⊆ Φ(u).
Hence if Y is open then so is Y .

Now we come to the termination argument which is standard:

Theorem 2.4 The strategy given above is terminating.

Proof. Since there are finitely many subsets of the set of subformulas of the initial
formula A, and since each rule only introduces such subformulas, at some iteration
each branch in an open kernel should have loop nodes.

Remark 2.5 The above argument is very rough and leads us to conclude that satis-
fiability for KD4 is exponential w.r.t. the input formula (since we gave an algorithm
that runs in exponential time using exponential space). This may be improved: it
is well-known that the complexity of satisfiability for KD4 is in PSPACE (see [18]
for details), this is because any branch produced by the algorithm is in fact of poly-
nomial length (i.e. it contains a polynomial number of nodes), each node containing
polynomially many subformulas. Then, since the computation may be performed one
branch after the other (depth-first computation) only polynomial space is needed. In
other words, though a tableau may be exponentially large, it does not need to be
exponentially deep. In our case, we would have to modify our algorithm in order to
develop only one branch at a time. This may be done by applying rule (D) or (3)
only once and on only one node at a time.

2.3 Kernels for KD4.C

In this subsection, we give a terminating non-deterministic tableau calculus for the
system KD4.C, that can be straightforwardly modified in order to apply to K4.C and

7Note that we are proving that there exists such a Yi+1; this amounts, in the case of rule ∨ to proving that there

exists a choice among A and B such that (♥i+1) holds.

8Note that because of point 4 of the algorithm, we are sure that propagation rules are applied at some iteration of

the tableau computation.

2. TERMINATING TABLEAUX FOR K4.C AND K4.DE 67

KT4.C.

For this we define a strategy to be applied on naive tableaux as defined previously;
the set of rules that is needed is: all classical rules, and rules (D), (3), (K), (4) and
(C) (rule (C*) is superfluous since it is subsumed by the rule (D)).
This strategy mainly consists of the following:

1. Compute a KD4-kernel (using only classical rules, and rules (D), (3), (K) and
(4)). This provides a finite tree (either closed or looping on each branch).

2. Create a successor common to each loop node9 (we will call this node the anti-
root) and propagate formulas (rules (K) and (4)) into it. Then go back to step 1,
with the anti-root as the starting node (and as such, as the new root).

Stop the computation when: the tableau closes at any step, or if looping anti-roots
are generated.

The algorithm runs as follows:
Starting from Y0 = (N0,Σ0,Φ0) where N0 only consists of only one node r0 (the
root), Σ0 is empty and Φ0 associate the formula A with r0.

1. Compute Yi+1 = (Ni+1,Σi+1,Φi+1) from Yi = (Ni,Σi,Φi) by applying the
strategy for KD4 only (i.e. by using only classical rules, and rules (D), (3), (K)
and (4)). In Yi+1, each branch loops (i.e. each of its leaves is a loop node), or
else, it is closed.

Let us denote by Loopi+1 the set of nodes of Ni+1 that are loop nodes
2. Compute Yi+2 = (Ni+2,Σi+2,Φi+2) from Yi+1 = (Ni+1,Σi+1,Φi+1) by:
• Ni+2 = Ni+1 ∪ {ri+2}, where ri+2 is a new node,
• Σi+2 = Σi+1 ∪ {(x, ri+2):x ∈ Loopi+1}
• Φi+2(ri+2) =

⋃
x∈Loopi+1

(Φi+1(x))2;
where S2 denotes the set {A,2A: 2A ∈ S}

The above algorithm must be applied until for some i and some l, either Yi is closed
or Φi(rl) ⊆ Φi(rk<l), where rl denotes the last anti-root generated. This strategy is
graphically represented in figure 1.
The key feature of our algorithm is that it is sufficient to compute only a unique
common successors for each of the nodes of the KD4 kernel, and not one for each pair
of nodes that have a common direct ancestor. In some sense, the anti-roots sum up
all the information of the intermediary nodes (those we would get by naively applying
rule C). It should be clear that this property only holds because of transitivity.

Theorem 2.6 The strategy given above is sound for KD4.C.

Proof. Straightforward since the resulting algorithm is a fair restriction of the naive
one which is sound.

Now, for proving the completeness of the algorithm, the main tool is the following
lemma, which plays the same role for KD4.C as the lemma 2.2 for KD4(this lemma
assumes that the algorithm always terminates. This will be proved in lemma 2.9):

9See previous section

68 A General Framework for Pattern-Driven Modal Tableaux

Step 1: compute
a KD4 kernel

Step 2: compute
the first anti-root

Ar0 Ar0

r1

r1

r0

r1

Step 1: compute
a KD4 kernel
starting from r1 rk<lΦ()rlΦ()

r1

r

r

rl-1

rl

2

0

and so on, until:

Fig. 1. The strategy for KD4.C

Lemma 2.7 Let Y =< N,Σ,Φ > be a kernel for A, last of the sequence Y0, . . . ,Yl

(whose anti-root is rl) obtained by the strategy given, then there exists a naive tableau
Y =< N,Σ,Φ > for A such that:

(♠) ∀x ∈ N : ∃u ∈ N : Φ(x) ⊆ Φ(u) and
∀y(

if ((x, y) ∈ Σ3 then ∃v ∈ N s.th. (u, v) ∈ Σ & Φ(y) ⊆ Φ(v)) and
if ((x, y) ∈ ΣC then Φ(y) ⊆ Φ(rl)))

NB: Σ3 and ΣC are defined page 64.

Proof. It is done by induction. Let

(♠i) ∀x ∈ Ni : ∃u ∈ N : Φi(x) ⊆ Φ(u) and
∀y(

if ((x, y) ∈ Σ3
i then ∃v ∈ N s.th. (u, v) ∈ Σ & Φi(y) ⊆ Φ(v)) and

if ((x, y) ∈ ΣC
i then Φi(y) ⊆ Φ(rl))).

Induction base: True since Φ0(x) = {A} ⊆ Φ(r0), and Σ3
0 = ΣC

0 = ∅.
Induction step: The induction hypothesis is (♠i), we examine the rule that may lead
from Yi to Yi+1:

• Classical rules: As for KD4, it is straightforward to show that Yi+1 may be defined
such that (♠i+1) holds.

• Rule (3): In this case,
Ni+1 = Ni ∪ {y} where y is a new node,

2. TERMINATING TABLEAUX FOR K4.C AND K4.DE 69

Σ3
i+1 = Σ3

i ∪ {(x, y)} (rule (3) is applied on node x),
ΣC

i+1 = ΣC,
Φi+1(y) = {A}, (since 3A ∈ Φi(x))

Then, by IH: ∃u ∈ N : Φi(x) ⊆ Φ(u)
⇒ ∃u′ ∈ N : Φi(x) ⊆ Φ(u′) and u′ is not a loop node (since either u is not a
loop node or it is a loop node but then there must be another node u′ such that
Φ(u) ⊆ Φ(u′))
⇒ (by rule (3)) ∃v′ ∈ N : (u′, v′) ∈ Σ &A ∈ Φ(v′) ⇒ (♠i+1).

• Rule (D): As for rule (3) but with Φi+1(y) = ∅
• Rule (4) and (K): In this item, rl denotes the last anti-root (which has no successor)

Let (x, y) ∈ Σi and Φi(x) = S,2A and Φi(y) = S′. There are two cases according
to whether (x, y) ∈ Σ3

i or (x, y) ∈ ΣC
i .

1. (x, y) ∈ Σ3
i :

it is enough to prove that ∃u, v ∈ N : (u, v) ∈ Σ & Φi+1(x) ⊆ Φ(u) & Φi+1(y) ⊆
Φ(v)
By IH, ∃u, v : (u, v) ∈ Σ & Φi(x) ⊆ Φ(u) & Φi(y) ⊆ Φ(v), hence 2A ∈ Φ(u)
⇒ (by rule (4) and (K)) A,2A ∈ Φ(v)
⇒ Φi+1(x) = Φi(x) ⊆ Φ(u) & Φi+1(y) = Φi(y) ∪ {A,2A} ⊆ Φ(v);

2. (x, y) ∈ ΣC
i :

it is enough to prove that Φi+1(x) ⊆ Φ(u) & Φi+1(y) ⊆ Φ(rl), and there are
two subcases:
– Either u 6= rl : then by IH, 2A ∈ Φ(u) & Φi(y) ⊆ Φ(rl)
⇒ A,2A ∈ Φ(rl) & Φi(y) ⊆ Φ(rl), by straightforward application of rule (4)
and (K), and the definition of the sets Φ(ri).
⇒ Φi+1(y) ⊆ Φ(rl)

– Or u = rl : and then by IH, 2A ∈ Φ(u) = Φ(rl). Since rl is the last
anti-root, we have: Φ(rl) ⊆ Φ(rk<l) ⇒ 2A ∈ Φ(rk) ⇒ A,2A ∈ Φ(rl)
(again by application of rule (4) and (K), and the definition of the sets Φ(ri))
⇒ Φi+1(y) ⊆ Φ(rl).

• Rule (C): This case is trivial since with Ni+1 = Ni ∪ {y} (y is the new node) and
Φi+1(y) = ∅ ⊆ Φ(rl) we have (♠i+1).

We can now state:

Theorem 2.8 The strategy given above is complete for KD4.C.

Proof. Similar to that of theorem 2.3.

Concerning the termination of the corresponding algorithm, we have:

Theorem 2.9 The strategy given above is terminating.

Proof. Our algorithm consists of two nested while-loops: for the inner one, the
argument is as for KD4, concerning the outer one, the argument is nevertheless the
same, there are finitely many distinct sets Φ(rl), hence some loop must appear.

Again, this only gives a bad upper bound for the complexity of satisfiability for KD4.C:
it is at least in EXPTIME. We improve this decidability result:

70 A General Framework for Pattern-Driven Modal Tableaux

Theorem 2.10 The complexity of satisfiability for KD4.C is in PSPACE.

Proof. Since there exist PSPACE algorithms for KD4, it is clear that the inner while-
loop of our algorithm may use only polynomial space (but exponential time) if we
adopt any PSPACE algorithms for KD4. Moreover, the next anti-root (provided the
current tableau does not close) may be computed by updating it each time we obtain
a loop node in the inner while-loop (we do not need to compute all the loop nodes
first). Concerning the outer while-loop of our algorithm, we only need to memorize the
branch consisting of the anti-roots that have been generated: then Ladner’s argument
still apply and only polynomially many anti-roots may be generated before being
included in some previous one.

2.4 Kernels for KD4.De

In this subsection, we give a terminating tableau calculus for the system KD4.De,
that can be straightforwardly modified in order to apply to K4.De (Note that the
system KT4.De is the same as KT4 i.e. S4).

The algorithm consists in using a modified rule for the treatment of density, to-
gether with the loop step of KD4 (cf. p. 65).

Consider the new following rules:

Rule (DDe):

O

OS Srewrites into

Rule (3De):

O

AAAS, S,rewrites into

These two rules introduce what we call here reflexive nodes w.r.t. the other nodes
that we call non reflexive nodes. These two new rules only apply on non reflexive
nodes (of course they apply only once), while usual rules (D) and (3) apply on reflex-
ive nodes. Thus the set of rules for KD4.De is: all classical rules, and rules (K), (4),
rules (3De) and (DDe) for non reflexive nodes, and rules (D) and (3) for reflexive
nodes.
We will prove below that this set of rules is both complete and sound: as a con-
sequence, in order to handle density (together with transitivity) one just need to
consider models with only one intermediary world having a reflexive edge. In other
words, the sequel will also prove that KD4.De is characterized by the Kripke frames
(W1,W2, R) where: ∀z ∈ W2 : (z, z) ∈ R and ∀x, y ∈ W1 : (x, y) ∈ R ⇒ ∃z ∈ W2 :
((x, z) ∈ R & (z, y) ∈ R), that is to say, frames where there are two kinds of worlds
(non reflexive ones and reflexive ones) such that the accessibility relation is reflexive
on reflexive ones, and there is always a reflexive node between two non reflexive ones.

2. TERMINATING TABLEAUX FOR K4.C AND K4.DE 71

The algorithm we propose is the same as that for KD4, but using rules (3) and
(D), or (3De) and (DDe) according to the type of node (reflexive or not). Also, a
node in this algorithm is not considered as its own ancestor (otherwise the loop step
would apply immediately!).
It must be applied until for some i, either Yi is closed or Yi+1 = Yi (i.e. there are
loop nodes on each branch).

For convenience, we introduce here the notion of constrained naive tableaux, which
are naive tableaux such that each application of rules (D) or (3) is followed by
an application of rule (De): this amounts to introduce the two rules (D+De) and
(3+De) in place of (D), (3) and (De). Of course, a constrained naive tableau is a
naive tableau.

For proving completeness, we rely (as in the case of KD4) on the following lemma:

Lemma 2.11 Let Y =< N,Σ,Φ > be a kernel forA (obtained by the above strategy)
then there exists a constrained naive tableau Y for A with Y =< N,Σ,Φ > and such
that:

(♥) ∀x ∈ N : ∃u ∈ N
[Φ(x) ⊆ Φ(u) and
∀y ∈ N : ∃v ∈ N s.th.
if ((x, y) ∈ Σ then ((u, v) ∈ Σ & Φ(y) ⊆ Φ(v))]

Proof. It is again done by induction. Let

(♥i) ∀x ∈ Ni : ∃u ∈ N
[Φi(x) ⊆ Φ(u) and
∀y ∈ Ni : ∃v ∈ N s.th.
if (x, y) ∈ Σi then ((u, v) ∈ Σ & Φi(y) ⊆ Φ(v))]

Induction base: True since Σ0 = ∅.
Induction step: The induction hypothesis is (♥i), we examine the rule that may lead
from Yi to Yi+1: concerning the classical rules, rules (K) and (4), the proof is similar
to that of KD4, we only consider the case of rule (D+De) (the case of rule (D+ 3)
is similar):

Rule (D+De): Let x ∈ Ni and y, z be two new nodes such that: Ni+1 = Ni∪{y, z},
Σ3

i+1 = Σ3
i ∪ {x, y}, ΣDe

i+1 = ΣDe
i ∪ {(x, z), (z, y), (z, z)}, Φi+1(x) = Φi(x) and

Φi+1(y) = Φi+1(z) = ∅, this corresponds to applying rule (D) and then rule (De).
We just have to prove that (♥i+1) is true for (x, y), (x, z) and (z, y) respectively,
i.e. we must give three pairs of nodes of Σ that satisfy (♥i+1)
By IH, ∃u ∈ N : Φi(x) ⊆ Φ(u)
– If u is not a reflexive node: ⇒ (by rule (DDe)) ∃v, w ∈ N : Φi+1(x) ⊆ Φ(u)(since
x is unchanged) and Φi+1(y) = ∅ ⊆ Φ(v) and Φi+1(z) = ∅ ⊆ Φ(w); moreover
we have: (u, v), (u,w), (v, w), (w,w) ∈ Σ
We are done with the pairs (u, v), (u,w) and (v, w) respectively.

– If u is a reflexive node: ⇒ (by rule (D)) ∃v ∈ N : Φi+1(x) ⊆ Φ(u)(since x is
unchanged) and Φi+1(y) = ∅ ⊆ Φ(v); moreover we have: (u, u), (u, v) ∈ Σ
We are done with the pairs (u, v), (u, u) and (u, v) respectively.

72 A General Framework for Pattern-Driven Modal Tableaux

Theorem 2.12 The strategy given above is complete for KD4.De.

Proof. Direct consequence of the lemma 2.11.

It remains to prove the soundness of the algorithm: contrarily to the case of KD4.C
and KD4, soundness must be proven since it is not a restriction of the naive one (but
it is fair). To this aim, we will prove below that if there exists an open tableau for A,
then there exists an open kernel for A.

In order to establish the proof of this we need some additionnal considerations.
Given a naive tableau Y =< N,Σ > we define the sets bet(x, y) to be the set of
nodes of Y which are between x and y by:

Definition 2.13 Let Y =< N,Σ > be a naive tableau, for all x, y ∈ Σ we set:
bet(x, y) = {z ∈ N : (x, z) ∈ Σ+ & (z, y) ∈ Σ+} i.e. the set of nodes which are
descendants of x and ancestors of y.

We also need the following fact:

Fact 2.14 Let Y =< N,Σ,Φ > be a naive tableau for A (open or closed), then
∀x, y ∈ N3 if (x, y) ∈ Σ3 then ∃u, v ∈ bet(x, y) s.th. (u, v) ∈ Σ+ & Φ(u) = Φ(v)

Proof. Direct consequence of the facts that there is a finite number of subsets of
subformulas of A and that there are infinitely many nodes between such x and y.

Remark 2.15 Let us now consider infinite kernels (i.e. structures obtained by ap-
plying the above algorithm without the loop step - cf. p. 65): it should be clear that
if there exists a open infinite kernel (for A) then there exists a finite one (note that
nodes are finitely branching): we just have to cut the infinite branches at the loop
nodes by applying the loop step. Thus we only have to show that from the open naive
tableau Y , we can build an open infinite kernel Y.

As in preceeding subsection we state and prove an intermediary lemma:

Lemma 2.16 Let Y =< N,Σ,Φ > be a naive tableau for A of root r then there
exists an infinite kernel for A of root rr and denoted by Y =< N,Σ,Φ > such that:

(♣) ∀x ∈ N : ∃u ∈ N
Φ(x) ⊆ Φ(u) and

[∀y ∈ N : ∃v ∈ N s.th.
if ((x, y) ∈ Σ
then ((u, v) ∈ Σ+ & Φ(y) ⊆ Φ(v)) & (x = y ⇒ Φ(u) = Φ(v))]

Proof. This is again proved by induction, let:

(♣i) ∀x ∈ Ni : ∃u ∈ N
Φi(x) ⊆ Φ(u) and
∀y ∈ Ni : ∃v ∈ N s.th.
if ((x, y) ∈ Σi

then ((u, v) ∈ Σ+ & Φi(y) ⊆ Φ(v)) & (x = y ⇒ Φ(u) = Φ(v))

2. TERMINATING TABLEAUX FOR K4.C AND K4.DE 73

Induction base: True since N0 = ∅ and Φ0(rr) = ∅ ⊆ Φ(r). Induction step: The
induction hypothesis is (♣i), we examine the rule that may leads from Yi to Yi+1

We only treat the non-classical ones, classical cases are similar to those of previous
proofs.
In order to simplify the notation, we will abbreviate the conjunction
Φi(x) ⊆ Φ(u) & Φi(y) ⊆ Φ(v) by (x, y)i ⊆ (u, v).

Rule (3De)– rule (DDe) is similar–: suppose rule (3De) is applied on node
x , thus (with the two new nodes y and z) we have: Ni+1 = Ni ∪ {y, z},
Σi+1 = Σi ∪ {(x, y), (x, z), (z, z), (z, y)}, Φi+1(z) = ∅ and Φi+1(y) = {A}:
then by IH, ∃u ∈ N : Φi(x) ⊆ Φ(u)
⇒ (by rule (3)) ∃v: (u, v) ∈ Σ & Φi+1(y) = {A} ⊆ Φ(v)
⇒ (by rule (De) infinitely many times) ∃w0, w1, . . . : (u,wi) ∈ Σ & (w0, v) ∈
Σ & (wi+1, wi) ∈ Σ
⇒ ∃wk, wl: (u,wk) ∈ Σ+ & (wk, wl) ∈ Σ+ & (wl, v) ∈ Σ+ & Φ(wk) = Φ(wl) (by the
fact 2.14)
Then, we have: (x, y)i+1 ⊆ (u, v), (x, z)i+1 ⊆ (u,wk) ⊆ (u,wl) & Φ(wk) = Φ(wl)
and (z, y)i+1 ⊆ (wl, v)
Rule (4) and (K): Let Φi(x) = S,2A& Φi(y) = S′ and (x, y) ∈ Σi. There are two
cases according to whether x = y (reflexive node) or not.

x 6= y : By IH, (x, y)i ⊆ (u, v) and (u, v) ∈ Σ+ hence 2A ∈ Φ(u) and by rules (K) and
(4), 2A,A ∈ Φ(v);

x = y : By IH, (x, x)i ⊆ (u, v) and (u, v) ∈ Σ+ hence 2A ∈ Φ(u) and 2A ∈ Φ(v), thus
by rules (4) and (K) we have A ∈ Φ(v) and then A ∈ Φ(u).

Lemma 2.17 Let Y =< N,Σ,Φ > be an open naive tableau for A, then there exists
an open kernel for A.

Proof. Direct consequence of lemma 2.16 and by the remark about the infinite ker-
nels (cf. page 72).

We can now state:

Theorem 2.18 The strategy given above is sound for KD4.De.

Proof. Immediate consequence of lemma 2.17.

And concerning the termination of the corresponding algorithm, we have:

Theorem 2.19 The strategy given above is terminating.

Proof. The argument is now exactly the same as for KD4.

Again, this only gives a bad upper bound for the complexity of satisfiability for
KD4.De: it is in EXPTIME. We improve this decidability result:

Theorem 2.20 The complexity of satisfiability for KD4.De is in PSPACE.

Proof. The proof is the same as for KD4, we just have to modify the notion of
branch: here a branch is the longest path from the root to a leaf (thus including
reflexive nodes).

74 A General Framework for Pattern-Driven Modal Tableaux

3 Complete tableaux for some bimodal logics with
permutation and/or confluence

3.1 Modal logics and relational properties

The language of our bimodal logic have 2a, 2b,... and 3a, 3b,... as additionnal
connectives w.r.t. classical logic. As usual, 3a and 3b abbreviate ¬2a¬ and ¬2b¬.
Thus we will use the same axioms as above but with indexes a or b.

We investigate some systems based on K(a,b) plus some of the axioms below.
Among them, axioms involving both modalities are known as interaction axioms.
As in the monomodal case, with each of these axioms can be associated a relational
property of the accessibility relations of the Kripke models (which are of the form
(W,Ra, Rb,m) where Ra and Rb are binary relations over W):

Axiom Property Notation
Ta = 2ap→ p reflexivity Ref a

4a = 2ap→ 2a2ap transitivity Tra

Tb = 2bp→ p reflexivity Ref b

4b = 2bp→ 2b2bp transitivity Tr b

Group 3: Properties handled by propagation rules

Axiom Property Notation
Da = 2ap→ 3ap seriality Sera

Dea = 3ap→ 3a3ap density Densa

Ca = 3a2ap→ 2a3ap confluence Conf a

Db = 2bp→ 3bp seriality Serb

Deb = 3bp→ 3b3bp density Densb

Cb = 3b2bp→ 2b3bp confluence Conf b

Per = 2a2bp↔ 2b2ap permutation Per

Cab = 3b2ap→ 2a3bp ab-confluence Conf ab

Group 4: Properties handled by structural rules

Where properties Per and Conf ab are defined by:

• Per :
∀x, y, z : ((x, y) ∈ Rb&(y, z) ∈ Ra) → (∃u: (x, u) ∈ Ra&(u, z) ∈ Rb)), and
∀x, y, z : ((x, y) ∈ Ra&(y, z) ∈ Rb) → (∃u: (x, u) ∈ Rb&(u, z) ∈ Ra))

or Rb◦Ra = Ra◦Rb

• Conf ab:
∀x, y, z : ((x, y) ∈ Rb&(x, z) ∈ Ra) → (∃u: (y, u) ∈ Ra&(z, u) ∈ Rb)),

or Rb◦Ra = Ra◦Rb

As a consequence of Sahlqvist’s theorem [24], a system based on K(a,b)+Per plus
any combination of these axioms is characterized by the Kripke models (W,Ra, Rb)

3. COMPLETE TABLEAUX FOR SOME BIMODAL LOGICS 75

whose accessibility relation satisfies the corresponding properties. Decision proce-
dures for systems based on K(a,b) plus non-interaction axioms are treated in [5], and
those based on K(a,b) plus interaction axioms of the form 3bp → 3ap in [7]. The
system K(a,b)+Per+Conf ab is also known as the weakest product modal logic K× K
investigated in [14].

3.2 Preliminaries and notations

Definition 3.1 A labelled ρ-rdag is a triple (N ,Σ,Φ) as in the monomodal case but
where Σ is partitionned into Σa and Σb.

3.3 Rules

Some rules are the same as for the monomodal case but with indexes, e.g.

• Rule (3a): r
3aA, S =⇒ 3aA, S r

a Ar

• Rule (2a): 2aA, S r
a S1r =⇒ 2aA, S r

a A, S1r

• Rule (4a): 2aA, S r
a S1r =⇒ 2aA, S r

a 2aA, S1r

• Rule (Da): r
S =⇒ S r

a ∅r

• And as well for rules (3b), (2b), (4b) and (Db).

In addition, in order to handle the permutation properties, we will use the following
structural rules:

• Rule Perba: S0 r��b ar
S1
PPrS2 =⇒ S0 r��b

PP
a

a b

r

r

S1

∅

PP
��rS2

• Rule Perab: S0 r��a br
S1
PPrS2 =⇒ S0 r��a

PP
b

b a

r

r

S1

∅

PP
��rS2

Rule Conf ab is the ab-version of rule Cf.
In order to define a tableau calculus for a logical system, we must associate a set

of rules with it. Tableaux calculi we are going to define contain:

• Classical rules

• Rules 3a and 3b

• Rule 2a and 2b

• Rules corresponding to the axioms of the system.

76 A General Framework for Pattern-Driven Modal Tableaux

3.4 Complete tableaux

Of course, in these cases, our Relational Closure lemma (1.5) still holds, and our
Fundamental lemma (1.12) holds as long as our Box lemma (1.11) holds too. Thus
completeness of tableaux calculi will hold if both the Box lemma and the Structural
lemma (1.7) hold. It is straightforward with these properties (as well as for symmetry
and/or euclideanness) to check that the Box lemma indeed holds:

Lemma 3.2 Let Υ = (N ,Σa,Σb,Φ) be a (ρ1 ∪ ρ2)-tableau with root r. Let x, y be
such that (x, y) ∈ (Σa)ρ1 and 2aA ∈ x; then A ∈ y. The same holds for (x, y) ∈ (Σb)ρ1

and 2bA ∈ x.
Proof. This is trivial since in the case of the properties we consider, we have (Σa ∪
Σb)ρ1 = (Σa)ρ1 ∪ (Σb)ρ1 . Other difficulties would arise if one consider closure proper-
ties that involve both relations, e.g. euclideanness of Σa ∪ Σa, symmetry of Σa ∩ Σb,
. . .

What about the Structural lemma (3)? It holds in fact as it is in the case of clo-
sure under reflexivity and transitivity (and the proof is the same), but needs some
additionnal requirements to hold for closure under symmetry or euclideanness: for ex-
ample, in the case of closure under symmetry, if Σ = Σa∪Σb satisfies Σb◦Σa = Σa◦Σb

then Σρ1 does not and some structural rules need to be added !

Lemma 3.3 Let ρ2 be a subset of properties of group 4, let ρ1 be a subset of group
3 and let Σ = Σa ∪ Σb be a ρ2-rgraph over a set N of nodes. Then Σρ1 is also a
ρ2-rgraph and hence is a (ρ1 ∪ ρ2)-rgraph.

Proof. We only treat one example: Conf ab ∈ ρ2 and Tra ∈ ρ1.
By hypothesis, we have Σb◦Σa = Σa◦Σb, and we must prove that:Σb+◦Σa ⊆ Σa◦Σb+

since ΣTra = Σb+ ∪Σa.
But, Σb+◦Σa = Σb

+◦Σa =
⋃

i≥1 Σb
i◦Σa ⊆ ⋃

i≥1 Σa◦Σb
i

= Σa◦Σb+ (by straightfor-
ward induction). The proof is similar for Per , and is the same as in the monomodal
case for the structural properties Da, Dea, Ca, and their b-versions. For other prop-
erties of group 3 (than Tra) the proof is the same (Tr b) or simpler (Ref a, Ref b).

Thus, for bimodal logics of permutation containing in addition any axiom listed
in groups 3 and 4 above, we obtain sound and complete naive tableaux very easily
(proof of soundness is straightforward).
About termination, as they are, naive tableaux terminates for systems not containing
Tra nor Tr b because of the decrease of the modal degree of formulas contained in
nodes, but with probably very high complexity (it is conjectured in [19] that even the
simple K(a,b)+Per+Conf ab may be of non-elementary complexity). At the moment,
it is not known whether K(a,b)+Per+Conf ab +Tra+Tr b is decidable ([19]).

4 Lotrec: a generic theorem prover

The above generic approach has been a theoretical basis for the development of the
generic modal theorem prover Lotrec at the Institut de Recherche en Informatique de
Toulouse. It is described in [10] and may be downloaded at

4. LOTREC: A GENERIC THEOREM PROVER 77

http://www.irit.fr/ACTIVITES/LILaC/Lotrec.
It has been designed in order to answer the need for designing provers for new modal
logics. In general, most implementors of provers for modal logics put the emphasis on
performance, and thus have restricted their prover to few fixed logics, hacking logics
and strategies in their systems.

The choice of one logic over another among possibly infinitely many modal logics
is driven by modeling needs and computational constraints of one’s applications. A
logic about actions and time is likely to have different semantical and computational
properties from a logic about database schemata. Even with the same logic, different
search strategies may be needed for different applications.

To answer the needs of users wishing to experiment and model with different logics
or strategies there is a need for a generic theorem prover for modal logics playing the
same role as Isabelle [23] or PVS [22] for higher order logics, while being less complex. If
the user is not the same person as the programmer of the prover, one needs flexibility
and portability of the implementation, high-level languages for tableau rules and
strategy definition and user-friendly interfaces.

Lotrec is such a generic tableau prover. It aims at covering all logics having possible
worlds semantics. Lotrec has been implemented by D. Fauthoux [11]. It is written in
Java. All entities are modeled as objects, in particular the tableaux, the nodes and
links of a tableau, the tableau rules, and the strategy. Within such an object-based
programming language, Lotrec raises Java’s event-based architecture to a declarative
approach, in order to be able to manipulate and manage the computation in an easy
but strict way.

In Lotrec, tableaux are generalized to graphs in order to enable complex modal logics
such as that of confluence, or multimodal logics with complex interactions between
modalities.

References

[1] M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Programming Exten-
sion. PhD thesis, Univ. Torino, Italy, 1998.

[2] M. Baldoni, L. Giordano, and A. Martelli. A Tableau Calculus for Multimodal Logics and some
(Un)Decidability Results. In H. de Swart (Ed)TABLEAUX’98, LNAI 1397,Springer-Verlag,
1998.

[3] M. A. Castilho, L. Fariñas del Cerro, O. Gasquet, and A. Herzig. Modal tableaux with propa-
gation rules and structural rules. Fundamenta Informaticae, 32(3/4):281-297, 1997.

[4] L. Catach, Les logiques multi-modales. Ph.D. thesis, Université Paris VI, France, 1989

[5] L. Catach, TABLEAUX: A General Theorem Prover for Modal Logics. Journal of Automated
Reasoning, 7:489-510, 1991.

[6] G. De Giacomo, F. Massacci. Tableau and Algorithm for Propositional Dynamic Logic with
Converse. In M. A. McRobbie, J. K. Slaney editor, Proc. CADE-13, LNAI 1104, Springer,
1996.

[7] S. Demri Complexity of simple dependent bimodal logics. In Proc. Int. Conf. Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX’2000), LNCS 1847, Springer,
2000.

[8] H. C. M. de Swart. Gentzen-type systems for C, K and several extensions of C and K; constructive
completeness proofs and effective decision procedure for these systems. Logique et Analyse, 1980.

[9] L. Fariñas del Cerro, and O. Gasquet. Tableaux Based Decision Procedures for Modal Logics of
Confluence and Density. Fundamenta Informaticae, 41(1):1-17, 2000.

[10] L. Fariñas del Cerro, D. Fauthoux, O. Gasquet, A. Herzig, D. Longin and F. Massacci. Lotrec:

78 A General Framework for Pattern-Driven Modal Tableaux

The Generic Tableau Prover for Modal and Description Logics. In: International Joint Confer-
ence on Automated Reasoning, System Description, Siena, Italy, 2001.

[11] D. Fauthoux. Lotrec, un outil javanais de traitement formel sur les graphes. Tech. rep., IRIT,
June 2000. Master Thesis (rapport de D.E.A).

[12] M. Fitting. Proof methods for modal and intuitionistic logics. D. Reidel, Dordrecht, 1983.

[13] M. Fitting. Basic modal logic. In D. Gabbay et al., editor, Handbook of Logic in Artificial
Intelligence and Logic Programming: Logical Foundations, vol. 1, Oxford University Press,
1993.

[14] D. M. Gabbay, V. Shehtman. Products of modal logics, Part 1. Logic Journal of the IGPL,
6:73-146, 1998.

[15] R. Goré. Methods for Modal and Temporal Logics. In D. Gabbay et al., editor, Handbook of
Tableau Methods, Kluwer Dordrecht, 1998.

[16] S. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic (24), 1959.

[17] S. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift
fr Mathematische Logik und Grundlagen der Mathematik (9), 1963.

[18] R. Ladner. The computational complexity of provability in systems of modal logic. SIAM
Journal on Computing, 6:466-480, 1977.

[19] M. Marx,S. Mikulas An elementary constrution for a non-elementary procedure Studia Log-
ica,72(2), 2002 (to appear).

[20] F. Massacci. Strongly analytic tableaux for normal modal logics. In Alan Bundy editor, Proc.
CADE-12, LNAI 814, Springer, 1994.

[21] F. Massacci. Single Step Tableaux for Modal Logics: Computational properties, complexity and
methodology. Journal of Automated Reasoning, 24(3): 319-364, April 2000.

[22] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Proc. of
CADE’92, LNAI, pp. 748–752, 1992.

[23] L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS, Springer-Verlag, 1994.

[24] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal
logics. In S.Kanger editor, Proc. 3rd Scandinavian Logic Symposium 1973, Studies in Logic 82
(1975), North-Holland, 1973

A Some properties about binary relations

In these appendix, we will make use of relations (binary relations) and rooted relations instead of
graphs and rooted graphs. The set of all relations over a given set will be denoted by R while that
of rooted relations will be denoted by RR.

Definition A.1 Let R be a relation over a set N : R(x) will denote the set of nodes accessible from x
by R: R(x) = {y ∈ N : (x, y) ∈ R}, R will denote its inverse, R+ will denote its transitive closure and
R∗ its transitive and reflexive closure. Also, Rn will denote the pairs (x, y) such that there is a path of
length n between x and y. The diagonal relation: {(x, x):x ∈ N} will be denoted by I and also by R0.
The composition of two relations R and S (which is defined as {(x, y): ∃z(x, z) ∈ R and (z, y) ∈ S}
will be denoted by (R◦S). The total relationN 2 is denoted by U . The empty relation is denoted by O.

Property A.2 (About R) Let R, S and T ∈ R, let ρ be a subset of group 1:
1. R+ =

⋃
i≥1

Ri

2. R = R

3. R ∪ S = R ∪ S

4. R◦S = S◦R

5. Rn = R
n

(for n ≥ 0)

A. SOME PROPERTIES ABOUT BINARY RELATIONS 79

6. R+ = R
+

7. R∗ = R
∗

8. (R ∪ I)+ = R∗

9. (R ∪ S)◦T = (R◦T) ∪ (S◦T)

10. T◦(R ∪ S) = (T◦R) ∪ (T◦S)

11. I+ = I∗ = I = I

12. If R 6= O then R◦R 6= O

13. If R 6= O then U◦R◦U = U

14. (Rn)+ ⊆ (R+)n (for n ≥ 0)

15. R ⊆ Rρ (growth)

16. R ⊆ S ⇒ Rρ ⊆ Sρ (monotonicity)

17. If P ∈ ρ then (Rρ)P = Rρ (idempotence); and of course: (Rρ)ρ = Rρ

18. R is reflexive iff I ⊆ R

19. R is symmetrical iff R ⊆ R

20. R is transitive iff R2 ⊆ R

21. R is euclidean iff (R◦R) ⊆ R, or iff (R◦R) ⊆ R

22. R is dense iff R ⊆ R2

23. R is serial iff I ⊆ (R◦R)

24. R is confluent iff (R◦R) ⊆ (R◦R)

25. R is rooted iff (R
∗◦R∗) = U

26. R is connected iff (R ∪ R)∗ = U , and rooted implies connected.

Proof. All are well-known or obvious properties except maybe 14 for which it suffices to prove that
(R2)+ ⊆ (R+)2:

(R+)2 = (
⋃

i≥1
Ri)2 = (

⋃
i≥1

Ri)◦(
⋃

i≥1
Ri) =

⋃
i≥1

⋃
j≥1

(Ri◦Rj)

=
⋃

i≥1

⋃
j≥1

(Ri+j) =
⋃

i≥2
(Ri),

and, (R2)+ =
⋃

i≥1
R2i ⊆

⋃
i≥2

(Ri).

Property A.3 (About RR) Let R ∈ RR:
1. Let ρ be a subset of group 1 then Rρ is also in RR.

2. (R
+◦R+◦R+◦R+) = (R

+◦R+)

80 A General Framework for Pattern-Driven Modal Tableaux

3. If (R◦R) ⊆ (R◦R) then (R
+◦R+) ⊆ (R+◦R+

)

4. (R
∗◦R+)+ = (R

∗◦R+)

Proof. 1. Trivial since the root r of R is still a root in Rρ.

2. If R = O then 2 holds trivially, else we have:

(R
+◦R+◦R+◦R+) = (R◦R∗◦R∗◦R◦R◦R∗◦R∗◦R) = (R◦U◦R◦R◦U◦R) = (R◦U◦R); (since R 6=

O ⇒ R◦R 6= O) = (R
+◦R+)

3. We show that (R◦R) ⊆ (R◦R) ⇒ ∀k, l ≥ 1: (R
k◦Rl) ⊆ (Rl◦Rk

) by induction on k + l.
Induction base:
if k + l = 2, the property holds by hypothesis.
Induction step:

if k > 1 then (R
k◦Rl) = (R◦Rk−1◦Rl) ⊆ (R◦Rl◦Rk−1

)(by IH) ⊆ (Rl◦R◦Rk−1
) (by IH) ⊆

(Rl◦Rk
).

else if k = 1 and l > 1 then
(R

k◦Rl) = (R
k◦R◦Rl−1) ⊆ (R◦Rk◦Rl−1)(by IH)

⊆ (R◦Rl−1◦Rk
)(by IH) ⊆ (Rl◦Rk

).

4. It suffices to show that (R
∗◦R+)2 = (R

∗◦R+):
If R = O then it holds trivially, else we have: (R

∗◦R+)2 = (R
∗◦R∗◦R)2 = (U◦R)2 = (U◦R◦U◦R) =

(U◦R) = (R
∗◦R+).

B. PROPERTIES OF CLOSURE OPERATIONS 81

B Properties of closure operations

Lemma 1.5 (Relational Closure Lemma)
This lemma stated on page 56 is a straightforward consequence of the lemmas B.1 and B.3 below.

Lemma B.1 (Closure under one property) Let R ∈ RR:
1. RRef = R ∪ I

2. RSym = R ∪ R

3. RTr = R+

4. REucl = R ∪ (R
+◦R+)

Proof. Only 4. is not obvious and well-known (it uses the fact that R has a root). We prove it by
showing:

i) R ∪ (R
+◦R+) ⊆ REucl

ii) R ∪ (R
+◦R+) is euclidean

and we will get the conclusion since REucl is the least superset of R being euclidean and, as such, it
contains any other euclidean superset of R.

i) First we prove by induction on i+ j that ∀i, j: (Ri◦Rj) ⊆ (REucl◦REucl).
Induction base:
i+ j = 2, i.e. i = j = 1: (R◦R) ⊆ (REucl◦REucl) (since R ⊆ REucl and hence R ⊆ REucl).
Induction step:
if j > 1 then

(R
i◦Rj) = (R

i◦Rj−1◦R) ⊆ (REucl◦REucl◦R) (by IH) ⊆ (REucl◦R)

⊆ (REucl◦REucl) (by growth).
else
if j = 1 and i > 1 then

(R
i◦Rj) = (R◦Ri−1◦Rj) ⊆ (R◦REucl◦REucl) (by IH) ⊆ (R◦REucl)

⊆ (REucl◦REucl).

Now, since (R
+◦R+) = (

⋃
i≥1

R
i
)◦(

⋃
j≥1

Rj) =
⋃

i,j≥1
(R

i◦Rj)

⊆
⋃

i,j≥1
(REucl◦REucl) = (REucl◦REucl) ⊆ REucl:

we obtain R ∪ (R
+◦R+) ⊆ R ∪REucl ⊆ REucl.

ii) We show that indeed R ∪ (R
+◦R+) is euclidean by using lemma A.2:

(R ∪ (R
+◦R+))◦(R ∪ (R

+◦R+)) = (R ∪ (R
+◦R+))◦(R ∪ (R

+◦R+))

= (R ∪ (R+◦R+
))◦(R ∪ (R

+◦R+)) = (R ∪ (R
+◦R+))◦(R ∪ (R

+◦R+))

= (R◦R) ∪ (R◦R+◦R+) ∪ (R
+◦R+◦R) ∪ (R

+◦R+◦R+◦R+)

⊆ (R
+◦R+) ∪ (R

+◦R+◦R+◦R+)

(since (R◦R), (R◦R+◦R+) and (R
+◦R+◦R) ⊆ (R

+◦R+))

⊆ (R
+◦R+) (Abour RR: 2) ⊆ R ∪ (R

+◦R+).

Thanks to the previous lemma, we know how to compute the closure of an RR under one property
of group 1, but how to do it for several properties ? The following lemma will provide us with a
tool for this computation. It states that if some fix-point is reached by performing alternatively the
closures under each of the properties of some subset ρ of group 1, then this fix-point is the closure
under ρ. Before, we recall that if ρ = {P1, . . . , Pn} is a set of properties, a relation S is said to be
the ρ-closure of some relation R (i.e. S = Rρ) if and only if S is the least relation containing R and
closed under each Pi.

82 A General Framework for Pattern-Driven Modal Tableaux

Lemma B.2 Let ρ = {P1, . . . , Pn} be a subset of group 1, and R ∈ RR. Let R0 = R and

Ri+1 = (. . . (RP1
i) . . .)Pn ; then if there exists m such that Rm+1 = Rm then Rm = Rρ.

Proof. We have by growth:
Rm ⊆ RP1

m ⊆ (RP1
m)P2 ⊆ . . . ⊆ (. . . ((RP1

m)P2) . . .)Pn = Rm+1. Now, since Rm = Rm+1 it comes:

Rm = RPi
m , for 1 ≤ i ≤ n (otherwise growth would be falsified) and thus Rm is closed under each Pi

(1 ≤ i ≤ n). Hence Rm is closed under ρ. To conclude, take note that Rρ is the least superset of R
closed under ρ and as such is contained in Rm which, in its turn, is contained in Rρ since R0 ⊆ Rρ

(by growth) and Ri ⊆ Rρ ⇒ Ri+1 ⊆ (. . . (((Rρ)P1)P2) . . .)Pn = Rρ (by idempotence).

Lemma B.3 (Closure under several properties) Let R be any RR:
1. RRef,Sym = R ∪ R ∪ I

2. RRef,Tr = (R ∪ I)+

3. RRef,Sym,Tr = (R ∪ R ∪ I)+

4. RSym,Tr = (R ∪R)+

5. RTr,Eucl = (R
∗◦R+)

Due to lemma 1.6, the other cases reduce to one of the previous.

Proof. We indicate a closure by some property ρ by
ρ

=⇒ :

1. Case of RRef,Sym: R
Ref
=⇒R∪ I Sym

=⇒ R∪ I ∪R ∪ I = R∪R∪ I Ref
=⇒R∪R∪ I. A fix-point has been

obtained.

2. Case of RRef,Tr : R
Ref
=⇒R ∪ I Tr

=⇒ = (R ∪ I)+ Ref
=⇒ (R ∪ I)+ ∪ I = (R ∪ I)+ = R∗.

3. Case of RRef,Sym,Tr : R
Ref
=⇒ cf. case 1

Sym
=⇒ R ∪ R ∪ I Tr

=⇒ (R ∪R ∪ I)+
Ref
=⇒ (R ∪ R ∪ I)+ ∪ I = (R ∪R ∪ I)+ = (R ∪ R)∗ = U Sym

=⇒ U ∪ U = U = (R
∗◦R∗).

4. Case of RSym,Tr : R
Sym
=⇒ (R ∪ R)

Tr
=⇒ (R ∪R)+

Sym
=⇒ (R ∪R)+ ∪ (R ∪ R)+

= (R ∪ R)+ ∪ (R ∪ R)
+

= (R ∪ R)+ ∪ (R ∪R)+ = (R ∪ R)+.

5. Case of RTr,Eucl: R
Tr
=⇒R+ Eucl

=⇒ = R+ ∪ ((R+)+◦(R+)+) = R+ ∪ (R
+◦R+)

= (R
∗◦R+)

Tr
=⇒ (R

∗◦R+)+ = (R
∗◦R+) (About RR: 4).

We need to prove now the stability of group 2 with respect to closure under several properties of
group 1. We first prove the following lemma concerning this stability with respect to closure under
one property of group 1, and then (lemma 1.7) shows that the same holds for several properties.

Lemma B.4 Let ρ2 be a subset of group 2, ρ1 a property of group 1, let R ∈ RR satisfying ρ2 then
Rρ1 is in RR and satisfies ρ2; hence it satisfies ρ1 ∪ ρ2.

Proof. The proof is case-based:
Case ρ2 3 Ser : Immediate since R ⊆ Rρ1 (by monotonicity).

Case ρ2 3 Dens: we must show that Rρ1 ⊆ (Rρ1)2:
– If ρ1 = Ref : Trivial since reflexivity implies density;
– If ρ1 = Sym:

(Rρ1)2 = R2 ∪ (R◦R) ∪ (R◦R) ∪ R2 ⊇ R2 ∪ R2 ⊇ R ∪ R,
hence (Rρ1)2 ⊇ R ∪ R = Rρ1 ;

B. PROPERTIES OF CLOSURE OPERATIONS 83

– If ρ1 = Tr :
(Rρ1)2 = (R+)2 ⊇ (R2)+ (About R: 14) ⊇ R+ = Rρ1 ;

– If ρ1 = Eucl : Trivial since euclideanness implies density;

Case ρ2 3 Conf : we must show that (Rρ1◦Rρ1) ⊆ (Rρ1◦Rρ1):
– If ρ1 = Ref :

(Rρ1◦Rρ1) = ((R ∪ I)◦(R ∪ I)) = (R ∪ I)◦(R ∪ I) = (R◦R) ∪ R ∪ R ∪ I
⊆ (R◦R) ∪ R ∪ R ∪ I (since R is confluent)
On the other hand, (Rρ1◦Rρ1) = (R◦R) ∪ R ∪ R ∪ I
hence (Rρ1◦Rρ1) ⊆ (Rρ1◦Rρ1);

– If ρ1 = Sym: Trivial since symmetry implies confluence;
– If ρ1 = Tr :

(Rρ1◦Rρ1) = (R
+◦R+) ⊆ (R+◦R+

) (About RR: 3) = (Rρ1◦Rρ1)
– If ρ1 = Eucl : Trivial since euclideanness implies confluence.

Lemma B.5 Let ρ2 be a subset of group 4 containing Per , let ρ1 be a property of group 3 and let
Σ = Σa ∪ Σb be a ρ2-rgraph over a set N of nodes. Then Σρ1 is also a ρ2-rgraph and hence is a
(ρ1 ∪ ρ2)-rgraph.

Proof. For properties among {Sera,Serb,Densa,Densb,Conf a,Conf b} the proof is the same as in
lemma B.4. It remains the case of Per(we only examine the cases of Ref a and Tra):
• If ρ1 = Ref a: (Σa)ρ1◦(Σb)ρ1 = (Σa∪I)◦Σb = (Σa◦Σb)∪ (I◦Σb) = (Σb◦Σa)∪Σb = (Σb)ρ1◦(Σa)ρ1 ;

• If ρ1 = Tra: (Σa)ρ1◦(Σb)ρ1 = (Σa)+◦Σb = (
⋃

n≥1
(Σa)n)◦Σb =⋃

n≥1
((Σa)n)◦Σb) =

⋃
n≥1

(Σb◦(Σa)n) = (Σb)ρ1◦(Σa)ρ1

Lemma 1.7 (Structural Lemma)
Let ρ2 be a subset of group 2, ρ1 a subset of group 1, let R ∈ RR satisfying ρ2 then Rρ1 is in RR
and satisfies ρ2; hence it satisfies ρ1 ∪ ρ2. This lemma extends straightforwardly to the bimodal case
w.r.t groups 3 and 4.

Proof. If ρ1 is empty it is trivial. Now suppose (IH1): the lemma is true for some ρ1; let P
be a property of group 1; we must prove (C): the lemma holds for ρ1 ∪ {P}. But Rρ1∪{P} is
the fixpoint of the sequence (((...((Rρ1)P)ρ1)P ...)ρ1)P that will be denoted by ((Rρ1)P)n times
where n is the number of closure operations to be done before to reach the fixpoint. If n = 0 we
trivially have (C). Now suppose (IH2): (C) holds for N , we must prove that it holds for N + 1. We
have: ((Rρ1)P)N+1 times = ((((Rρ1)P)N times)ρ1)P . By (IH2), ((Rρ1)P)N times satisfies ρ2,

then by (IH1) (((Rρ1)P)N times)ρ1 also satisfies ρ2 and by lemma B.4 ((((Rρ1)P)N times)ρ1)P =
((Rρ1)P)N+1 times satisfies ρ2 too.

An Open Research Problem: Strong
Completeness of R. Kowalski’s

Connection Graph Proof Procedure

Jörg Siekmann Universität des Saarlandes, Stuhlsatzenhausweg,
D-66123 Saarbrücken, Germany. E-mail: siekmann@dfki.de

Graham Wrightson Department of Computer Science and Software
Engineering, The University of Newcastle, NSW 2308, Australia.
E-mail: graham@cs.newcastle.edu.au

Abstract

The connection graph proof procedure (or clause graph resolution as it is more commonly called
today) is a theorem proving technique due to Robert Kowalski. It is a negative test calculus (a
refutation procedure) based on resolution. Due to an intricate deletion mechanism that generalises
the well-known purity principle, it substantially refines the usual notions of resolution-based systems
and leads to a largely reduced search space. The dynamic nature of the clause graph upon which
this refutation procedure is based, poses novel meta-logical problems previously unencountered in

logical deduction systems. Ever since its invention in 1975 the soundness, confluence and (strong)
completeness of the procedure have been in doubt in spite of many partial results. This paper
provides an introduction to the problem as well as an overview of the main results that have been
obtained in the last twenty-five years.

1 Introduction to Clause Graph Resolution

We assume the reader to be familiar with the basic notions of resolution-based theorem
proving (see, for example, Alan Robinson [39], Chang, C.-L. and Lee, R.C.-T. [16] or
Don Loveland [29]). Clause graphs introduced a new ingenious development into the
field, the central idea of which is the following: In standard resolution two resolvable
literals must first be found in the set of sets of literals before a resolution step can be
performed, where a set of literals represents a clause (i.e. a disjunction of these literals)
and a statement to be refuted is represented as a set of clauses. Various techniques
were developed to carry out this search. However, Robert Kowalski [27] proposed an
enhancement to the basic data structure in order to make possible resolution steps
explicit, which — as it turned out in subsequent years — not only simplified the
search, but also introduced new and unexpected logical problems. This enhancement
was gained by the use of so-called links between complementary literals, thus turning
the set notation into a graph-like structure. The new approach allowed in particular for
the removal of a link after the corresponding resolution step and a clause that contains
a literal which is no longer connected by a link may be removed also (generalised purity
principle). An important side effect was that this link removal had the potential to
cause the disappearance of even more clauses from the current set of clauses (avalanche
effect).

85L. J. of the IGPL, Vol. 10 No. 1, pp. 85–103 2002 c©Oxford University Press

86 An Open Research Problem

Although this effect could reduce the search space drastically it also had a significant
impact on the underlying logical foundations. To quote Norbert Eisinger from his
monograph on Kowalski’s clause graphs [21]:

“Let S and S′ be the current set of formulae before and after a deduction
step S ` S′. A step of a classical calculus and a resolution step both simply
add a formula following from S. Thus, each interpreted as the conjunction
of its members, S and S′ are always equivalent. For clause graph resolution,
however, S may contain formulae missing in S′, and the removed formulae are
not necessarily consequences of those still present in S′. While this does not
affect the forward implication, S does in general no longer ensue from S′. In
other words, it is possible for S′ to possess more models than S. But, when S
is unsatisfiable, so must be S′, i.e. S′ must not have more models than S, if
soundness, unsatisfiability and hence refutability, is to be preserved.”

This basic problem underlying all investigations of the properties of the clause graph
procedure will be made more explicit in the following.

2 Clause Graph Resolution: The Problem

The standard resolution principle, called set resolution in the following, assumes the
axioms and the negated theorem to be represented as a set of clauses. In contrast,
the clause graph proof procedure represents the initial set of clauses as a graph by
drawing a link between pairs of literal occurrences to denote that some relation holds
between these two literals. If this relation is “complementarity” (it may denote other
relations as well, see e.g. Christoph Walther [52], but this is the standard case and
the basic point of interest in this paper) of the two literals, i.e. resolvability of the
respective clauses, then an initial clause graph for the set

S = {{ −P (z, c, z),−P (z, d, z)}, {P (a, x, a),−P (a, b, c)},
{P (a, w, c), P (w, y, w)}, {P (u, d, u),−P (b, u, d), P (u, b, b)},
{−P (a, b, b)}, {−P (c, b, c), P (v, a, d), P (a, v, b)}}

is the graph in Figure 1. Here P is a ternary predicate symbol, letters from the
beginning of the alphabet a, b, c, . . . denote constants, letters from the end of the
alphabet x, y, z, v, . . . denote variables and −P (. . .) denotes the negation of P (. . .).

2. CLAUSE GRAPH RESOLUTION: THE PROBLEM 87

Example 2.1

-Paxa -Pabc -Pawc -Pwyw

-Pzcz -Pzdz

6

1

2 3

4

-Pcbc Pvad Pavb

Pudu -Pbud Pavb

-Pabb7

8

9

5

10

Fig. 1.

An appropriate most general unifier is associated with each link (not shown in the
example of Figure 1). We use the now standard notation that adjacent boxes denote
a clause, i.e. the conjunction of the literals in the boxes.

So far such a clause graph is just a data structure without commitment to a particu-
lar proof procedure and in fact there have been many proposals to base an automated
deduction procedure on some graph-like notion (e.g. Andrews [2], Andrews [3], Bibel
[7], Bibel [8], Chang and Slagle [17], Kowalski [27], Shostak [40, 41], Sickel [42],
Stickel [51], Yates and Raphael and Hart [58], Omodeo [37], Yarmush [57], Murray
and Rosenthal [31, 32]).

Kowalski’s procedure uses a graph-like data structure as well, but its impact is
more fundamental since it operates now as follows: suppose we want to perform the
resolution step represented by link 6 in Figure 1 based on the unifier σ = {w → b}.
Renaming the variables appropriately we obtain the resolvent {P (a, x′, a), P (b, y′, b)}
which is inserted into the graph and if now all additional links are set this yields the
graph:

-Paxa -Pabc -Pawc -Pwyw

-Pzcz -Pzdz

Pax’a Pby’b

11 12 13 14

1
2 3

4

-Pcbc Pvad Pavb

Pudu -Pbud Pavb

-Pabb7

8

9

5

10

Fig. 2.

88 An Open Research Problem

Now there are three essential operations:

1. The new links don’t have to be recomputed by comparing every pair of literals
again for complementarity, but this information can instead be inherited from the
given link structure.

2. The link resolved upon is deleted to mark the fact that this resolution step has
already been performed,

3. Clauses that contain a literal with no link connecting it to the rest of the graph
may be deleted (generalised purity principle).

While the first point is the essential ingredient for the computational attractiveness
of the clause graph procedure, the second and third points show the ambivalence be-
tween gross logical and computational advantages versus severe and novel theoretical
problems. Let us turn to the above example again. After resolution upon link 6 we
obtain the graph in Figure 2 above. Now since link 6 has been resolved upon we have
it deleted it according to rule (2). But now the two literals involved become pure and
hence the two clauses can be deleted as well leading to the following graph:

-Pzcz -Pzdz

Pax’a Pby’b

11 12 13 14

-Pcbc Pvad Pavb

Pudu -Pbud Pavb

-Pabb7

8

9
10

Fig. 3.

But now the literal −P (c, b, c) in the bottom clause becomes pure as well and hence
we have the graph:

2. CLAUSE GRAPH RESOLUTION: THE PROBLEM 89

-Pzcz -Pzdz

Pax’a Pby’b

11 12 13 14

Pudu -Pbud Pavb

-Pabb

9
10

Fig. 4.

This removal causes the only literal −P (a, b, b) in the bottom clause to become
pure and hence, after a single resolution step followed by all these purity deletions,
we arrive at the final graph:

-Pzcz -Pzdz

Pax’a Pby’b

11 12 13 14

Fig. 5.

It is this strong feature that reduces redundancy in the complementary set of
clauses, that marks the fascination for this proof procedure (see Ohlbach [33, 34],
Bläsius [11, 12], Eisinger et al. [23], Ohlbach and Siekmann [36], Bläsius et al. [14],
Eisinger [19], Eisinger, Siekmann and Unvericht [22], Ohlbach [35], Ramesh et al.
[38], Murray and Rosenthal [32], Siekmann and Wrightson [45]). It can sometimes
even reduce the initial redundant set to its essential contradictory subset (subgraph).
But this also marks its problematical theoretical status: how do we know that we
have not deleted too many clauses? Skipping the details of an exact definition of
the various inheritance mechanisms (see e.g. Eisinger [21] for details) the following
example demonstrates the problem.

Suppose we have the refutable set S = {{P (a), P (a)}, {−Pa}} and its initial graph
as in Figure 6, where PUR means purity deletion and MER stands for merging two
literals (Andrews [1]), whilst RES stands for resolution.

90 An Open Research Problem

Example 2.2

-Pa

Pa Pa
PUR PUR

?

Pa

-Pa

-Pa

MER RES {2}

Fig. 6.

Thus in two steps we would arrive either at the empty set ?, which stands for sat-
isfiability, or in the lower derivation we arrive at the empty clause {�}, which stands
for unsatisfiability.

This example would seem to show that the procedure:

(i) is not confluent, as defined below

(ii) is not sound (correct), and

(iii) is not refutation complete (at least not in the strong sense as defined below),

and hence would be useless for all practical purposes.
But here we can spot the flaw immediately: the process did not start with the full

initial graph, where all possible links are set. If, instead, all possible links are drawn
in the initial graph, the example in Figure 6 fails to be a counterexample. On the
other hand, after a few initial steps we always have a graph with some links deleted,
for example because they have been resolved upon. So how can we be sure that the
same disastrous phenomenon, as in the above example, will not occur again later on
in the derivation?

These problems have been called the confluence, the soundness and the (strong)
completeness problem of the clause graph procedure and it can be shown that for
the original formulation of the procedure in Kowalski [27] (with full subsumption and
tautology removal) all these three essential properties unfortunately do not hold in
general. However, for suitable remedies (of subsumption and tautology removal) the
first two properties hold, whereas the third property has been open ever since.

3. PROPERTIES AND RESULTS 91

3 Properties and Results for the Clause Graph Proof
Procedure

In order to capture the strange and novel properties of logical graphs let us fix the
following notions: A clause graph of a set of clauses S consists of a set of nodes
labelled by the literal occurrences in S and a set of links that connect complementary
literals. There are various possibilities to make this notion precise (e.g. Siekmann
and Stephan [43, 44], Brown [15], Eisinger [18] and [21], Bibel [5], Smolka [48, 49, 50]
Bibel and Eder [10], Hähnle et al. [25], Murray and Rosenthal [31]).

Let INIT(S) be the full initial clause graph for S with all possible links set. This
is called a full connection graph in Bibel and Eder [10], a total graph in Eisinger [21]
and in Siekmann, Stephan [43] and a complete graph in Brown [15].

Definition 3.1 Clause graph resolution is called
refutation sound if INIT(S) ∗−→ {�} then S is unsatisfiable;
refutation complete if S is unsatisfiable then there exists a derivation

INIT(S) ∗−→ {�};
refutation confluent if S is unsatisfiable, and,

if INIT(S) ∗−→ G1 and INIT(S) ∗−→ G2

then there exists G1
∗−→ G′ and G2

∗−→ G′ for some G′;
affirmation sound if INIT(S) ∗−→ ? then S is satisfiable;
affirmation complete if S is satisfiable then there exists a derivation

INIT(S) ∗−→ ?;
affirmation confluent if S is satisfiable, and,

if INIT(S) ∗−→ G1 and INIT(S) ∗−→ G2

then there exists G1
∗−→ G′ and G2

∗−→ G′, for some G′.

The state of knowledge about the clause graph proof procedure at the end of the
1980’s can be summarised by the following major theorems. There are some subtleties
involved when subsumption and tautology removal are involved (see Eisinger [21] for
a thorough exposition; the discovery of the problems with subsumption and tautology
removal and an appropriate remedy for these problems is due to Wolfgang Bibel).

Theorem 3.2 (Bibel, Brown, Eisinger, Siekmann, Stephan) Clause graph res-
olution is refutation sound.

Theorem 3.3 (Bibel) Clause graph resolution is refutation complete.

Theorem 3.4 (Eisinger, Smolka, Siekmann, Stephan) Clause graph resolution
is refutation confluent.

Theorem 3.5 (Eisinger) Clause graph resolution is affirmation sound.

Theorem 3.6 (Eisinger) Clause graph resolution is not affirmation confluent.

Theorem 3.7 (Smolka) For the unit refutable class, clause graph resolution with
an unrestricted tautology rule is refutation complete, refutation confluent, affirmation
sound, (and strongly complete).

The important notion of strong completeness is introduced below.

92 An Open Research Problem

Theorem 3.8 (Eisinger) Clause graph resolution with an unrestricted tautology
rule is refutation complete, but neither refutation confluent nor affirmation sound.

As important and essential as the above-mentioned results may be, they are not
enough for the practical usefulness of the clause graph procedure: the principal re-
quirement for a proof procedure is not only to know that there exists a refutation,
but even more importantly that the procedure can actually find it after a finite num-
ber of steps. These two notions, called refutation completeness and strong refutation
completeness in the following, essentially coincide for set resolution but unfortunately
they do not do so for the clause graph procedure.

This can be demonstrated by the example, in Figure 7, where we start with the
graph G0 and derive G1 from G0 by resolution upon the link marked ☞. The last
graph G2 contains a subgraph that is isomorphic to the first, hence the corresponding
inference steps can be repeated over and over again and the procedure will not termi-
nate with the empty clause. Note that a refutation, i.e. the derivation of the empty
clause, could have been obtained by resolving upon the leftmost link between P and
−P .

Example 3.9 (adapted from Eisinger [21])
G0 ☞

P

-P

-P

P

Q

-Q

-Q

Q

R

-R

G0 → G1

P

-P

-P

P

Q

-Q

P -R

☞

-Q R

Q -R

G1 → G2

P

-P

-P

P

Q

-Q Q -R

P -R

☞

-Q R

Q -R

Fig. 7.

3. PROPERTIES AND RESULTS 93

Examples of this nature gave rise to the strong completeness conjecture, which in
spite of numerous attacks has remained an open problem now for over twenty years:

How can we ensure for an unsatisfiable graph that the derivation stops after
finitely many steps with a graph that contains the empty clause?

If this crucial property cannot be ascertained, the whole procedure would be ren-
dered useless for all practical purposes, as we would have to backtrack to some earlier
state in the derivation, and hence would have to store all intermediate graphs.

The theoretical problems and strange counter intuitive facts that arise from the
(graphical) representation were first discovered by Jörg Siekmann and Werner Stephan
and reported independently in Siekmann and Stephan [43, 44] and by Frank Brown in
[15]. They suggested a remedy to the problem: the obvious flaw in the above example
can be attributed to the fact that the proof procedure never selects the essential link
for the refutation (the link between −P and P).

This, of course, is a property which a control strategy should have, i.e. it should
be fair in the sense that every link is eventually selected. However this is a subtle
property in the dynamic context of the clause graph procedure as we shall see in the
following.

Control Strategies

In order to capture the strange metalogical properties of the clause graph procedure,
Siekmann and Stephan [43, 44] introduced two essential notions in order to capture
the above-mentioned awkward phenomenon. These two notions have been the essence
of all subsequent investigations:

(i) the notion of a kernel. This is now sometimes called the minimal refutable sub-
graph of a graph, e.g. in Bibel and Eder [10];

(ii) several notions of covering, called fairness in Bibel and Eder [10], exhaustiveness
in Brown [15], fairness-one and fairness-two in Eisinger [21] and covering-one, two
and three in Siekmann and Stephan [43].

Let us have a look at these notions in turn, using the more recent and advanced
notation of Eisinger [21].

Why is it not enough to simply prove refutation completeness as in the case of
clause set resolution? Ordinary refutation completeness ensures that if the initial
set of clauses is unsatisfiable, then there exists a refutation, i.e. a finite derivation
of the empty clause. Of course, there is a control strategy for which this would be
sufficient for clause graph resolution as well, namely an exhaustive enumeration of
all possible graphs, as in Figure 8, where we assume that the initial graph G0 has
n links. However such a strategy is computationally infeasible and far too expensive
and would make the whole approach useless.

We know by Theorem 3.3 that the clause graph procedure is refutation complete,
i.e. that there exists a subgraph from which the derivation can be obtained. Could
we not use this information from a potential derivation we know to exist in order to
guide the procedure in general?

Many strategies for clause graphs are in fact based on this very idea (Andrews [3],
Antoniou and Ohlbach [4], Bibel [6, 8], Chang and Slagle [17], Sickel [42]). However,

94 An Open Research Problem
G0

G01 G02 G03 · · G0n

G0

G011 · G01m · · · · ·

Fig. 8.

in general, finding the appropriate subgraph essentially amounts to finding a proof in
the first place and we might as well use a standard resolution-based proof procedure to
find the derivation and then use this information to guide the clause graph procedure.

So let us just assume in the abstract that every full (i.e. a graph where every
possible link is set) and unsatisfiable graph contains a subgraph, called a kernel (the
shaded area in Figure 9), from which an actual refutation can be found in a finite
number of steps.

Fig. 9.

We know from Theorem 3.3 above and from the results in Siekmann and Stephan
[43, 44] that every resolution step upon a link within the kernel eventually leads to
the empty clause and thus to the desired refutation. If we can ensure that:

1. resolution steps involving links outside of the kernel do not destroy the kernel, and
2. every link in the kernel is eventually selected,

then we are done. This has been the line of attack ever since. Unfortunately the
second condition turned out to be more subtle and rather difficult to establish. So
far no satisfactory solution to this problem has been found.

So let us look at these concepts a little closer.

3. PROPERTIES AND RESULTS 95

Definition 3.10 A filter for an inference system is a unary predicate F on the set
of finite sequences of states. The notation S0

∗−→ Sn with F stands for a derivation
S0

∗−→ Sn where F(S0 . . . Sn) holds. For an infinite derivation, S0 → . . .→ Sn → . . .
with F means that F(S0 . . . Sn . . .) holds for each n.

This notion is due to Gert Smolka in [49] and Norbert Eisinger in [21] and it is
now used in several monographs on deduction systems (see e.g. K. Bläsius and H.
J. Bürckert [13]). Typical examples for a filter are the usual restriction and ordering
strategies in automated theorem proving, such as set-of-support by Wos and Robinson
and Carson [54], linear refutation by Loveland [28], merge resolution by Andrews [1],
unit resolution by Wos [53], or see Kowalski [26].

Definition 3.11 A filter F for clause graph resolution is called
refutation sound : INIT(S) ∗−→ {�} with F then S is unsatisfiable;
refutation complete: if S is unsatisfiable then there exists

INIT(S) ∗−→ {�} with F;
refutation confluent : Let S be unsatisfiable,

For INIT(S) ∗−→ G1 with F and INIT(S) ∗−→ G2

with F then there exists G1
∗−→ G′ with F and

G2
∗−→ G′ with F, for some G′;

strong refutation for an unsatisfiable S there does not exist an infinite
completeness : derivation INIT(S) → G1 → G1 → . . .→ Gn → . . .

with F.

Note that → with F need not be transitive, hence the special form of confluence,
also note that the procedure terminates with {�} or with ?.

The most important and still open question is now: can we find a general property
for a filter that turns the clause graph proof procedure into a strongly complete
system? Obviously the filter has to make sure that every link (in particular every link
in some fixed kernel) is eventually selected for resolution and not infinitely postponed.

Definition 3.12 A filter F for clause graph resolution is called covering, if the follow-
ing holds: Let G0 be an initial graph, let G0

∗−→ Gn with F be a derivation, and let
λ be a link in Gn. Then there is a finite number n(λ), such that for any derivation
G0

∗−→ Gn
∗−→ G with F extending the given one by at least n(λ) steps, λ is not in

G.

This is the weakest notion, called “coveringthree” in Siekmann and Stephan [43],
exhaustiveness in Brown [15] and fairness in Bibel and Eder [10]. It is well-known
and was already observed in Siekmann and Stephan [43] that the strong completeness
conjecture is false for this notion of covering.

The problem is that a link can disappear without being resolved upon, namely by
purity deletion, as the examples from the beginning demonstrate. Even the original
links in the kernel can be deleted without being resolved upon, but may reappear
after the copying process.

For this reason stronger notions of fairness are required: apparently even essential
links can disappear without being resolved upon and reappear later due to the copying
process. Hence we have to make absolutely sure that every link in the kernel is
eventually resolved upon. To this end imagine that each initial link bears a distinct
colour and that each descendant of a coloured link inherits the ancestor’s colour:

96 An Open Research Problem

Definition 3.13 An ordering filter F for clause graph resolution is called coveringtwo,
if it is a covering and at least one link of each colour must have been resolved upon
after at most finitely many steps.

At first sight this definition now seems to capture the essence, but how do we know
that the “right” descendant (as there may be more than one) of the coloured ancestor
has been operated upon? Hence the strongest definition of fairness for a filter:

Definition 3.14 A filter F for clause graph resolution is called coveringone, if each
colour must have disappeared after at most finitely many steps.

While the strong completeness conjecture can be shown in the positive for the
latter notion of covering (see Siekmann and Stephan [44]), hardly any of the practical
and standard filters actually fulfill this property (except for some obvious and exotic
cases).

So the strong completeness conjecture boils down to finding:

1. a proof or a refutation that a covering filter is strongly complete, for the appro-
priate notions of coveringone, -two, and -three, and

2. strong completeness results for subclasses of the full first-order predicate calculus,
or

3. an alternative notion of covering for which strong completeness can be shown.

The first two problems were settled by Norbert Eisinger and Gerd Smolka.

Theorem 3.15 (Smolka) For the unit refutable class the strong completeness con-
jecture is true, i.e. the conjunction of a covering filter with any refutation complete
and refutation confluent restriction filter is refutation complete, refutation confluent,
and Noetherian, i.e. it terminates.

This theorem, whose essential contribution is due to Gerd Smolka [48] accounts
for the optimism at the time. After all the unit refutable class of clauses (Horn
clauses) turned out to be very important for many practical purposes, includng logic
programming, and the theorem shows that all the essential properties of a useful
proof procedure now hold for the clause graph procedure. Based on an ingenious
construction, Norbert Eisinger showed however the following devastating result which
we will look at again in more detail in Section 4.

Theorem 3.16 (Eisinger) In general the strong completeness conjecture is false,
even for a restriction filter based on the coveringtwo definition.

This theorem destroyed once and for all the hope of finding a solution to the problem
based on the notion of fairness, as it shows that even for the strongest possible form
of fairness, strong completeness cannot be obtained.

So attention turned to the third of the above options, namely of finding alternative
notions of a filter for which strong completeness can be shown. Early results are in
Wrightson [56], Eisinger [21] and more recent results are Hähnle et al. [25], Meagher
and Hext [30].

Let us now look at the proof of Theorem 3.16 in more detail.

4. THE EISINGER EXAMPLE 97

4 The Eisinger Example

This example is taken from Eisinger [21], p. 158, Example 7.4 7. It shows a cyclic
coveringtwo derivation, i.e. it shows that the clause graph proof procedure does not
terminate even for the strong notion of a coveringtwo filter, hence in particular not
for the notion of coveringthree either.

Let S = {PQ,−PQ,−Q−R,RS,R− S} and INIT(S) = G0.
G0

-P Q

P Q

2 -Q -R

5

1

4

3
R -S

R S

6

G1

P

Q

5

8 -P -R

Q -R

9

7 3

4

R -S

R S

6

G2

P

Q

5

8

11

-P -R

-Q -R

-Q -S

9

7

4!

R -S

R S

6

10 G3

-S -Q

S -Q

14

11

13

12

10

Q P 8 -P -R

R -S

R S

6

7!

9

G4

-S -Q

S -Q

14 Q P

13

11

8

17
-P S

-P -R

-S

R

15

9

16

12

G5

-S -Q

S -Q

14 Q P

13

11

8

18

-P

-P

-P -R

19

S

R

-S R
12 9

16

17

G6

-S -Q

S -Q

14 Q P

13

11

8

18

-P

-P

-P -R

19

-Q

R

-S R
12 9

2021

G7

-S -Q

S -Q

14 Q P

13

11

8

18

-P

-P

-P -R

19

-Q

R

-S -P
22!

G8

-S -Q

S -Q

14 Q P

13

11

8

18

-P

-P

-P -R

19

-Q

R

-Q -P

21 20

25 24

G9

-S -Q

S -Q

14 Q P

13

11

8

18

Q -Q

-P

-P -R

19

-Q -P

25 24

2627
R

29
30

G8 includes two copies of −Q−P , one of which might be removed by subsumption.
To make sure that the phenomenon is not just a variation of the notorious subsumption

98 An Open Research Problem

problem described earlier in his monograph, Norbert Eisinger does not subsume, but
performs the corresponding resolution steps for both clause nodes in succession.

G10

-S -Q

S -Q

14 Q P

13

11

8

18

Q -Q

Q -Q

33 34

36

35

30

26

31 32

27

28

-P R

-P -R

19

G11

-S -Q

S -Q

14 Q P

13

11

8

18
-P R

-P -R

19

G10 contains two tautologies and all links which are possible among its clause nodes.
In other words, it is the initial clause graph of {S−Q,−S−Q,QP,−P−R,−PR,Q−
Q,Q−Q}. So far only resolution steps and purity removals were performed; now apply
two tautology removals to obtain G11.
G11 has the same structure as G0, from which it can be obtained by applying the

literal permutation π : ±Q 7→ ∓Q,±P 7→ ±S 7→ ∓R 7→ ±P . Since π6 = id, five more
“rounds” with the analogous sequence of inference steps will reproduce G0 as G66,
thus after sixty-six steps we arrive at a graph isomorphic to G0.

The only object of G0 still present in G11 is the clause node labelled PQ. In
particular, all initial links disappeared during the derivation. Hence G0 and G66

have no object in common, which implies that the derivation is covering. The
following classes of link numbers represent the “colours” introduced for the cover-
ingtwo concept in Definition 3.13; the numbers of links resolved upon are asterisked:
{1∗}, {2, 8, 17, 18, 20∗, 23, 24∗}, {3∗, 9∗, 19}, {4∗, 7∗}, {5, 11, 13, 21, 25, 26, . . . , 36},
{6, 10, 12, 14, 15∗, 16∗, 22∗}. Only the colour {5, 11, . . . , 36} was never selected for
resolution during the first round, and it just so happens that the second round starts
with a resolution on link 11, which bears the critical colour. Hence the derivation
also belongs to the coveringtwo class.

This seminal example was discovered in the autumn of 1986 and has since been
published and quoted many times. It has once and for all destroyed all hope of a
positive result for the strong completeness conjecture based only on the notion of
covering or fairness.

The consequence of this negative result has been compared to the most unfortunate
fact that the halting problem of a Turing machine is unsolvable. The (weak) analogy
is in the following sense: all the work on deduction systems rests upon the basic result
that the predicate calculus is semidecidable, i.e. if the theorem to be shown is in fact
valid then this can be shown after a finite number of steps, provided the uniform
proof procedure carries out every possible inference step.

Yet, here we have a uniform proof procedure — clause graph resolution — which by
any intuitive notion of fairness (“carries out every possible inference step eventually”)
runs forever even on a valid theorem — hence is not even semidecidable.

In summary:

The open problem is to find a filter that captures the essence of fairness on the
kernel which is practically useful1 — and then to show the strong completeness

1This is important, as there are strategies which are known to be complete (for example to take a standard resolution

5. LIFTING 99

property holds for this new notion of a filter.

The open problem is not to invent an appropriate termination condition (even as
brilliant as the decomposition criteria of Bibel and Eder [10]2 as the proof procedure
will not terminate even for the strongest known notion of covering (fairness) — and
this is exactly why the problem is still interesting even when the day is gone.

5 Lifting

All of the previous results and counterexamples apply to the propositional case or
ground level as it is called in the literature on deduction systems.

The question is, if and how these ground results can be lifted to the general case of
the predicate calculus.

While lifting is not necessarily the wrong approach for the connection graph, the
proof techniques known so far are too weak: the problem is more subtle and requires
much stronger machinery for the actual lifting.

The standard argument is as follows: first the result is established for the ground
case, and there is now a battery of proof techniques3 known in order to do so. After
that the result is “lifted” to the general case in the following sense: Let S be an
unsatisfiable set of clauses, then by Herbrand’s theorem we know that there exists
a finite truth-functionally contradictory set S′ of ground instances of S. Now since
we have the completeness result for this propositional case we know there exists a
(resolution style) derivation. Taking this derivation, we observe that all the clauses
involved are just instances of the clauses at the general level and hence “lifting” this
derivation amounts to exhibiting a mirror image of this derivation at the general level,
as the following figures shows:

S ` {�}
⇓ ⇑
S′

∣∣
ground {�}

This proof technique is due to Alan Robinson [39].
Unfortunately this is not enough for the clause graph procedure, as we have the

additional graph-like structure: not only has the ground proof to be lifted to the
general level as usual, it has also to be shown that an isomorphic (or otherwise
sufficient) graph structure can be mirrored from the ground level graph INIT(S′)
to the graph at the general level INIT(S), such that the derivation can actually be
carried out within this graph structure as well:

theorem prover to find a proof and then use this information for clause-graph resolution). Hence these strategies

are either based on some strange notion, or else on some too specific property.
2The weak notion of fairness as defined by W. Bibel and E. Eder [10] can easily be refuted by much simpler examples

(see e.g. Siekmann and Stephan [43]) and Norbert Eisinger’s construction above refutes a much stronger conjecture.

The proof in the Bibel and Eder paper not only contains an excusable technical error, which we all are unfortunately

prone to (the flaw is on page 336, line 29, where they assume that the fairness condition forces the procedure to

resolve upon every link in the minimal complementary submatrix, here called the kernel), but unfortunately misses

the very nature of the open problem (see also Siekmann and Wrightson [47]).

3Such as induction on the excess-literal-number, which is due to W. Bledsoe (see Loveland [29]).

100 An Open Research Problem

INIT(S) ` {G(�)}
⇓ ⇑

INIT(S′)
∣∣
ground {G′(�)}

where G(�) is a clause graph that contains the empty clause �.
This turned out to be more difficult than expected in the late 1970’s, when most

of this work got started. However by the end of the 1980’s it was well-known that
standard lifting techniques fail: the non-standard graph-oriented lifting results in
Siekmann and Stephan [44] turned out to be false. Similarly the lifting results in
Bibel [8] and in Bibel and Eder [10], theorem 5.4 are also false.

To quote from Norbert Eisinger’s monograph ([21], p. 125) on clause graphs

“Unfortunately the idea (of lifting a refutation) fails for an intricate difficulty
which is the central problem in lifting graph theoretic properties. A resolution
step on a link in G (the general case) requires elimination of all links in G′ (the
ground refutation) that are mapped to the link in G. . . . Such a side effect can
forestall the derivation of the successor.”

This phenomenon seems to touch upon a new and fundamental problem, namely,
the lifting technique has to take the topological structure of the two graphs (the
ground graph and the general clause graph) into account as well, and several additional
graph-theoretical arguments are asked for.

The ground case part essentially develops a strategy which from any ground initial
state leads to a final state. In the clause graph resolution system any such strategy
has to willy-nilly distinguish between “good” steps and “bad” steps from each ground
state, because there are ground case examples where an inappropriate choice of infer-
ence steps leads to infinite derivations that do not reach a final state. Eliminating or
reducing the number of links with a given atom are sample criteria for “good” steps in
different strategies. The lifting part then exploits the fact that it suffices to consider
the conjunction of finitely many ground instances of a given first order formula, and
show how to lift the steps of a derivation existing for the ground formula to the first
order level. Clause graph resolution faces the problem that a single resolution step
on the general level couples different ground level steps together in a way that may
be incompatible with a given ground case strategy, because “bad” steps have to be
performed as a side effect of “good” steps.

That this is not always straightforward and may fail in general is shown by several
(rather complex) examples (pp.123–130 in Eisinger [21]), which we shall omit here.
The interested reader may consult the monograph itself, which still represents most
of what is known about the theoretical properties of clause graphs today.

To be sure, there is a very simple way to solve this problem: just add to the inference
system an unrestricted copy rule and use it to insert sufficiently many variants.

However to introduce an unrestricted copy rule, as, for example, implicitly assumed
in the Bibel [8] monograph, completely destroys the practical advantages of the clause
graph procedure. It is precisely the advantage of the strong redundancy removal which
motivated so many practical systems to employ this rather complicated machinery
(see e.g. Ohlbach and Siekmann [36]). Otherwise we may just use ordinary resolution
instead.

6. CONCLUSION 101

We feel that maybe the lifting technique should be abandoned altogether for clause
graph refutation systems: the burden of mapping the appropriate graph structure
(and taking its dynamically changing nature into account) seems to outweigh its
advantages and a direct proof at the most general level with an appropriate technique
appears far more promising. But only the future will tell.

6 Conclusion

The last twenty-five years have seen many attempts and partial results about so far
unencountered theoretical problems that marred this new proof procedure, but it is
probably no unfair generalisation to say, that almost every paper (including ours) on
the problems has had technical flaws or major errors and the main problem — strong
completeness — has been open ever since 1975 when clause graph resolution was first
introduced to the scholarly community.

Why is that so?
One reason may be methodological. Clause graph resolution is formulated within

three different conceptual frameworks: the usual clausal logic, the graphtheoretic
properties and finally the algorithmic aspects, which account for its nonmonotonic
nature. So far most of the methodological effort has been spent on the graphtheoret-
ical notions (see e.g. Eisinger [21]) in order to obtain a firm theoretical basis. The
hope being that once these graphtheoretical properties have a sound mathematical
foundation, the rest will follow suit. But this may have been a misconception: it is —
after all — the metalogical properties of the proof procedure we are after and hence
the time may have come to question the whole approach.

In (Gabbay, Siekmann [24]) we try to turn the situation back from its (graph-
theroetical) head to standing on its (logical) feet, by showing a logical encoding of
the proof procedure without explicit reference to graphtheoretical properties.

Mathematics, it is said, advances through conjectures and refutations and this is a
social process often carried out over more than one generation. Theoretical computer
science and artificial intelligence apparently are no exceptions to this general rule.

Acknowledgements

This paper has been considerably improved by critical comments and suggestions
from the anonymous referees and from Norbert Eisinger, Christoph Walther and Dov
Gabbay.

References

[1] Andrews, P. B.: Resolution with Merging. J. ACM 15 (1968) 367–381.

[2] Andrews, P. B.: Refutations by Matings. IEEE Trans. Comp. C-25, (1976) 8, 801–807.

[3] Andrews, P.B.: Theorem Proving via General Matings. J. ACM 28 (1981) 193–214.

[4] Antoniou, G., Ohlbach, H.J.: Terminator. Proceedings 8th IJCAI, Karlsruhe, (1983) 916–919.

[5] Bibel, W.: A Strong Completeness Result for the Connection Graph Proof Procedure. Bericht
ATP-3-IV-80, Institut für Informatik, Technische Universität, München (1980).

[6] Bibel, W.: On the completeness of connection graph resolution. In German Workshop on Artifi-
cial Intelligence. J.Siekmann, ed. Informatik Fachberichte 47, Springer, Berlin, Germany (1981)
pp.246–247.

102 An Open Research Problem

[7] Bibel, W.: On matrices with connections. J.ACM, 28 (1981) 633–645.

[8] Bibel, W.: Automated Theorem Proving. (1982) Vieweg. Wiesbaden.

[9] Bibel, W.: Matings in matrices. Commun. ACM, 26, (1983) 844–852.

[10] Bibel, W., Eder, E.: Decomposition of tautologies into regular formula and strong completeness
of connection-graph resolution J. ACM 44 (1997) 320–344.

[11] Bläsius, K. H.: Construction of equality graphs. SEKI report SR-86-01 (1986) Univ. Karlsruhe,
Germany.

[12] Bläsius, K. H.: Equality reasoning based on graphs. SEKI report SR-87-01 (1987) Univ. Karl-
sruhe, Germany.

[13] Bläsius, K. H., Bürckert, H. J.: Deduktions Systeme, (1992) Oldenbourg Verlag. Also in English:
Ellis Horwood, 1989.

[14] Bläsius, K. H., Eisinger, N., Siekmann, J., Smolka, G., Herald A., Walter, C. The Markgraf Karl
refutation procedure. Proc 7th IJCAI, Vancouver (1981).

[15] Brown, F. Notes on Chains and Connection Graphs. Personal Notes, Dept. of Computation and
Logic, University of Edinburgh (1976).

[16] Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving, Academic Press
(1973).

[17] Chang, C.-L., Slagle, J.R.: Using Rewriting Rules for Connection Graphs to Prove Theorems.
Artificial Intelligence 12 (1979) 159–178.

[18] Eisinger, N.: What you always wanted to know about clause graph resolution. In Proc of 8th
Conf. on Automated Deduction Oxford (1986) LNCS 230, Springer.

[19] Eisinger, N.: Subsumption for connection graphs. Proc 7th IGCAI, Vancouver (1981).

[20] Eisinger, N.: Completeness, Confluence, and Related Properties of Clause Graph Resolution.
Ph.D. dissertation, Universität Kaiserslautern (1988).

[21] Eisinger, N.: Completeness, Confluence, and Related Properties of Clause Graph Resolution.
Pitman, London, Morgan Kaufmann Publishers,Inc., San Mateo,California (1991).

[22] Eisinger, N., Siekmann, J., Unvericht, E.: The Markgraf Karl refutation procedure. Proc of Conf
on Automated Deduction, Austin, Texas (1979).

[23] Eisinger, N., Ohlbach, H. J., Präcklein, A.: Reduction Rules for Resolution Based Systems
Artificial Intelligence 50,2 (1991) 141–181.

[24] Gabbay, D., Siekmann, J.: Logical encoding of the clause graph proof procedure, 2002, forth-
coming.

[25] Hähnle, R., Murray, N. V., Rosenthal, E.: Ordered resolution versus connection graph resolution.
In: R. Goré, A. Leitsch, T. Nipkow Automated Reasoning, Proc of IJCAR 2001 (2001) LNAI
2083, Springer.

[26] Kowalski, R.: Search Strategies for Theorem Proving. Machine Intelligence (B.Meltzer and
D.Michie, eds.), 5 Edinburgh University Press, Edinburgh, (1970) 181–201.

[27] Kowalski, R.: . A proof procedure using connection graphs. J.ACM 22 (1975) 572–595.

[28] Loveland, D. W.: A Linear Format for Resolution. Proc. of Symp. on Automatic Demonstration.
Lecture Notes in Math 125, Springer Verlag, Berlin, (1970) 147–162. Also in Siekmann and
Wrightson [46], 377–398.

[29] Loveland, D. W.: Automated Theorem Proving: A Logical Basis North- Holland, New York
(1978).

[30] Meagher D., Hext, J.: Link deletion in resolution theorem proving (1998) unpublished
manuscript.

[31] Murray, N. V., Rosenthal, E.: Path resolution with link deletion. Proc. of 9th IJCAII Los
Angeles (1985).

[32] Murray, N. V., Rosenthal, E.: Dissolution: making paths vanish. J. ACM 40 (1993).

[33] Ohlbach, H. J.: Ein regelbasiertes Klauselgraph Beweisverfahren. Proc. of German Conference
on AI, GWAI-83 (1983) Springer Verlag IFB vol 76.

[34] Ohlbach, H. J.: Theory unification in abstract clause graphs. Proc. of German Conf. on AI
GWAI-85 (1985) Springer Verlag IFB vol 118.

[35] Ohlbach, H. J.: Link inheritance in abstract clause graphs J. Autom. Reasoning 3 (1987).

[36] Ohlbach, H. J., Siekmann, J.: The Markgraf Karl refutation procedure. In: J. L. Lassez, G.
Plotkin, Computational Logic (1991) MIT Press, Cambridge MA.

6. CONCLUSION 103

[37] Omodeo, E. G.: The linked conjunct method for automatic deduction and related search tech-
niques. Computers and Mathematics with Applications 8 (1982) 185–203.

[38] Ramesh, A., Beckert, B., Hähnle, R., Murray, N. V.: Fast subsumption checks using anti-links
J. Autom. Reasoning 18 (1997) 47–83.

[39] Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.ACM 12 (1965)
23–41.

[40] Shostak, R.E.: Refutation Graphs. J. Artificial Intelligence 7, (1976), 51–64.

[41] Shostak, R.E.: A Graph-Theoretic View of Resolution Theorem-Proving. Report SRI Interna-
tional, Menlo Park (1979).

[42] Sickel, S.: A Search Technique for Clause Interconnectivity Graphs. IEEE Trans. Comp. C-25
(1976) 823–835.

[43] Siekmann, J. H., Stephan, W.: Completeness and Soundness of the Connection Graph Proof
Procedure. Bericht 7/76, Fakultät Informatik, Universität Karlsruhe (1976). Also in Proceedings
of AISB/GI Conference on Artificial Intelligence, Hamburg (1978).

[44] Siekmann, J. H., Stephan, W.: Completeness and Consistency of the Connection Graph Proof
Procedure. Interner Bericht Institut I, Fakultät Informatik, Universität Karlsruhe (1980).

[45] Siekmann, J. H., Wrightson, G.: Paramodulated connection graphs Acta Informatica 13 (1980).

[46] Siekmann, J. H., Wrightson, G.: Automation of Reasoning. Springer- Verlag, Berlin, Heidelberg,
New York. Vol 1 and vol 2 (1983).

[47] Siekmann, J. H., Wrightson, G.: Erratum: A counterexample to W. Bibel’s and E. Eder’s strong
completeness result for connection graph resolution. J. ACM 48 (2001) 145.

[48] Smolka, G.: Completeness of the connection graph proof procedure for unit refutable clause sets.
In Proceedings of GWAI-82. Informatik Fachberichte, vol. 58. Springer-Verlag, Berlin, Germany
(1982) 191-204.

[49] Smolka, G.: Einige Ergebnisse zur Vollständigkeit der Beweisprozedur von Kowalski. Diplomar-
beit, Fakultät Informatik, Universität Karlsruhe (1982).

[50] Smolka, G.: Completeness and confluence properties of Kowalksi’s clause graph calculus (1982)
SEKI report SR-82-03, University of Karlsruhe, Germany.

[51] Stickel, M.: A Non-Clausal Connection-Graph Resolution Theorem-Proving Program. Proceed-
ings AAAI-82, Pittsburgh (1982) 229–233.

[52] Walthe, Chr.: Elimination of redundant links in extended connection graphs. Proc of German
Workshop on AI, GWAI-81 (1981) Springer Verlag, Fachberichte vol 47.

[53] Wos, L.T., Carson, D.F., Robinson, G.A.: The Unit Preference Strategy in Theorem Proving.
AFIPS Conf. Proc. 26, (1964) Spartan Books, Washington.
Also in Siekmann and Wrightson [46], 387–396.

[54] Wos, L.T., Robinson, G.A., Carson, D.F.: Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving. J.ACM 12, (1965) 536–541. Also in Siekmann and Wrightson
[46], 484–492.

[55] Wos, L. T, et al.: Automated Reasoning: Introduction and Applications (1984) Englewood Cliffs,
new Jersey, Prentice-Hall.

[56] Wrightson, G.: A pragmatic strategy for clause graphs or the strong completeness of connection
graphs. Report 98-3, Dept Comp. Sci., Univ of Newcastle, Australia (1989).

[57] Yarmush, D. L.: The linked conjunct and other algorithms for mechanical theorem-proving.
Technical Report IMM 412, Courant Institute of Mathematical Sciences, New York University

(1976).

[58] Yates, R. A., Raphael, B., Hart, T. P.: Resolution Graphs. Artificial Intelligence 1 (1970)
257–289.

Received January 2002

Interest Group in Pure and Applied
Logics (IGPL)

The Interest Group in Pure and Applied Logics (IGPL) is sponsored by The Euro-
pean Association for Logic, Language and Information (FoLLI), and currently has
a membership of over a thousand researchers in various aspects of logic (symbolic,
mathematical, computational, philosophical, etc.) from all over the world (currently,
more than 50 countries). Our main activity is that of a research and information
clearing house.

Our activities include:

• Exchanging information about research problems, references and common interest
among group members, and among different communities in pure and applied
logic.

• Helping to obtain photocopies of papers to colleagues (under the appropriate copy-
right restrictions), especially where there may be difficulties of access.

• Supplying review copies of books through the journals on which some of us are
editors.

• Helping to organise exchange visits and workshops among members.
• Advising on papers for publication.
• Editing and distributing a Newsletter and a Journal (the first scientific journal

on logic which is FULLY electronic: submission, refereeing, revising, typesetting,
publishing, distribution; first issue: July 1993): the Logic Journal of the Interest
Group on Pure and Applied Logics. (For more information on the Logic Journal
of the IGPL, see the Web homepage: http://www.jigpal.oupjournals.org)

• Keeping a public archive of papers, abstracts, etc., accessible via ftp.
• Wherever possible, obtaining reductions on group (6 or more) purchases of logic

books from publishers.

If you are interested, please send your details (name, postal address, phone, fax, e-mail
address, research interests) to:

IGPL Headquarters
c/o Prof. Dov Gabbay
King’s College, Dept of Computer Science
Strand
London WC2R 2LS
United Kingdom
e-mail: dg@dcs.kcl.ac.uk

For the organisation, Dov Gabbay, Ruy de Queiroz and Hans Jürgen Ohlbach

View publication statsView publication stats

http://www.jigpal.oupjournals.org/
mailto:dg@dcs.kcl.ac.uk
http://www.pms.informatik.uni-muenchen.de/mitarbeiter/ohlbach
https://www.researchgate.net/publication/220245186

