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Abstract

Classical automated theorem proving of today is based on ingenious search techniques to find
a proof for a given theorem in very large search spaces—often in the range of several billion clauses.
But in spite of many successful attempts to prove even open mathematical problems automatically,
their use in everyday mathematical practice is still limited.

The shift from search based methods to more abstract planning techniques however opened up
a paradigm for mathematical reasoning on a computer and several systems of that kind now employ
a mix of interactive, search based as well as proof planning techniques.

The �MEGA system is at the core of several related and well-integrated research projects of the
�MEGA research group, whose aim is to develop system support for a working mathematician as
well as a software engineer when employing formal methods for quality assurance. In particular,
�MEGA supports proof development at a human-oriented abstract level of proof granularity. It is a
modular system with a central proof data structure and several supplementary subsystems including
automated deduction and computer algebra systems. �MEGA has many characteristics in common
with systems like NUPRL, COQ, HOL, PVS, and ISABELLE. However, it differs from these systems
with respect to its focus on proof planning and in that respect it is more similar to the proof planning
systems CLAM and λCLAM at Edinburgh.
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1. Introduction

The vision of computer-supported mathematics and a system which provides inte-
grated support for all work phases of a mathematician has always fascinated researchers
in artificial intelligence, particularly in the deduction systems area, and more recently in
mathematics as well. The dream of mechanizing (mathematical) reasoning dates back to
Gottfried Wilhelm Leibniz in the 17th century with the touching vision that two philoso-
phers engaged in a dispute would one day simply code their arguments into an appropriate
formalism and then calculate (Calculemus!) who is right. At the end of the 19th century
modern mathematical logic was born with Frege’s Begriffsschrift and an important mile-
stone in the formalization of mathematics was Hilbert’s program and the 20th century
Bourbakism.

With the logical formalism for the representation and calculation of mathematical argu-
ments emerging in the first part of the twentieth century it was but a small step to implement
these techniques now on a computer as soon as it was widely available.

In 1954 Martin Davis’ Presburger Arithmetic Program was reported to the US Army
Ordnance and the Dartmouth Conference in 1956, which is not only known for giving
birth to artificial intelligence in general but also more specifically for the demonstration of
the first automated reasoning programs for mathematics by Herb Simon and Alan Newell.

However, after the early enthusiasm of the 1960s, in particular the publication of the
resolution principle in 1965 [84], and the developments in the 70s a more sober realization
of the actual difficulties involved in automating everyday mathematics set in and the field
increasingly fragmented into many subareas which all developed their specific techniques
and systems.1

It is only very recently that this trend appears to be reversed, with the CALCULE-
MUS2 and MKM3 communities as driving forces of this movement. In CALCULEMUS

the viewpoint is bottom-up, starting from existing techniques and tools developed in the
computer-algebra and deduction systems communities. MKM3 approaches the goal of
computer-based mathematics for the new millennium by a complementary top-down ap-
proach starting from existing, mainly pen and paper based mathematical practice down to
system support.

The �MEGA project aims at an integrated approach since its start in the mid 80s and it
is deeply rooted in both initiatives. The �MEGA system is at the core of the project and it
has many characteristics in common with systems like NUPRL [1], COQ [34], HOL [47],
PVS [79], and ISABELLE [80,78]. However, it differs from these systems with respect to its
focus on proof planning and in that respect it is more similar to the proof planning systems
CLAM and λCLAM at Edinburgh [83,29]. In this article we shall first provide an overview
of the main developments of the �MEGA project and then point to current research and
some future goals.

1 The history of the field is presented in a classical paper by Martin Davis [35] and also in [36] and more
generally in his history of the first electronic computers [37]. Another source is Jörg Siekmann [86] and more
recently [87].

2 http://www.calculemus.org.
3 http://www.mkm-ig.org.

http://www.calculemus.org
http://www.mkm-ig.org
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2. �MEGA

The �MEGA project represents one of the major attempts to build an all encompassing
assistance tool for the working mathematician or for the formal work of a software en-
gineer. It is a representative of systems in the paradigm of proof planning and combines
interactive and automated proof construction for domains with rich and well-structured
mathematical knowledge. The inference mechanism at the lowest level of granularity is
an interactive theorem prover based on a higher-order natural deduction (ND) variant of a
soft-sorted version of Church’s simply typed λ-calculus [33]. The logical language, which
also provides some support for partial functions, is called POST , for partial functions
and order sorted type theory. The search for a proof, however, is usually conducted at a
higher level of granularity defined by tactics and methods. Automated proof search at this
‘abstract’ (i.e., less granular) level is called proof planning (see Section 2.3). Proof con-
struction is also supported by already proven assertions, i.e., theorems and lemmata, and
by calls to external systems to simplify or solve subproblems. Resource-guided search for
applicable tactics, methods, and external systems is conducted by �ANTS, an agent-based
reasoning system.

2.1. System overview

At the core of �MEGA is the proof plan data structure PDS [32], in which proofs and
proof plans are represented at various levels of granularity (see Fig. 1). The PDS is a di-

Fig. 1. The proof plan datastructure PDS is at the core of the �MEGA system.
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rected acyclic graph, where open nodes represent unjustified propositions that still need to
be proved and closed nodes represent propositions that are already proved. The proof plans
are developed and classified with respect to a taxonomy of mathematical theories in the
mathematical knowledge base MBASE [42,56]. The user of �MEGA, or the proof planner
MULTI [73,64], or else the agent-based reasoning system �ANTS [19] modify the PDS
during proof development until a complete proof plan, where all nodes are closed, has been
found. They can also invoke external reasoning systems, whose results are included in the
PDS after appropriate transformation. Once a complete proof plan at an appropriate level
of granularity has been found, this plan must be expanded by sub-methods and sub-tactics
into lower levels of granularity until finally a proof at the level of the logical calculus is
established. After expansion of these high-level proofs to the underlying ND-calculus, the
PDS can be checked by �MEGA’s proof checker.

Hence, there are two main tasks supported by this system, namely (i) to find a proof
plan, and (ii) to expand this proof plan into a calculus-level proof; and both jobs can be
equally difficult and time consuming. Task (ii) employs a combination of an LCF-style
tactic based expansion mechanism as well as deductive proof search in order to generate
a lower-level proof object. It is a design objective of the PDS that various proof levels
coexist with their respective dynamic relationships being maintained.

The graphical user interface L�UI [90] provides both a graphical and a tabular view
of the proof under consideration, and the interactive proof explanation system P.rex [40,
39,41] generates a natural language presentation of the proof (see Figs. 5 and 6).

The previously monolithic system has been split up and separated into several inde-
pendent modules (see Fig. 2), which are connected via the mathematical software bus
MATHWEB-SB [99]. An important benefit is that MATHWEB-SB modules can be distrib-
uted over the Internet and are then remotely accessible by other research groups as well.
There is now a very active MathWeb user community with sometimes several thousand
theorems and lemmata being proven per day. Many theorems are generated automatically
as (currently non-reusable and non-indexed) subproblems in natural language processing
(see the Doris system4), proof planning and verification tasks.

2.2. Proof objects

The central data structure for the overall search is the proof plan data structure PDS
in Fig. 1 and the subsystems cooperate to construct a proof whose status is stored again
in the PDS . The facilities provided by the subsystems include support for interactive and
mixed-initiative theorem proving by the user, the proof planner, and by external systems
such as automated theorem provers and computer algebra systems. These facilities require,
in particular, the representation of proof steps at different levels of granularity ranging from
abstract, human-oriented reasoning to logic-level justifications.

Therefore �MEGA provides a hierarchical proof plan data structure that represents a
(partial) proof at different levels of granularity (called partial proof plans). Technically, the
PDS is a directed acyclic graph consisting of nodes, justifications and hierarchical edges

4 http://www.cogsci.ed.ac.uk/~jbos/doris/.

http://www.cogsci.ed.ac.uk/~jbos/doris/
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Fig. 2. The vision of an all encompassing mathematical assistance environment: we have now modularized and
out-sourced many of the support tools (whose names are printed in red) such that they can also be used by other
systems via the MATHWEB-SB software bus. (For interpretation of the references in color in this figure legend,
the reader is referred to the web version of this article.)

(see [32] for more details). Each node represents a sequent and can be open or closed. An
open node corresponds to a sequent that is to be proved and a closed node to a sequent
which is already proved or reduced to other sequents using an inference rule R := A1...Ak

B
;

where R may represent a calculus rule, a tactic, a method, or a call to an external sys-
tem. Such a rule denotes that we can conclude B from A1, . . . ,Ak or reading it the other
way round that B can be reduced to A1, . . .Ak . Thus, an inference step is represented by
a justification R which connects a node nb containing the sequent B to nodes n1, . . . , nk

containing the sequents A1, . . .Ak . If a node has more than one outgoing justification,
each of them represents a proof attempt of the sequent stored in the source node, but at
different granularity. These justifications are ordered with respect to their granularity us-
ing hierarchical edges. A hierarchical edge connects two justifications j1 and j2 with the
meaning that justification j1 represents a more detailed proof attempt than justification j2.
Thus, �MEGA’s PDS explicitly maintains the original proof plan as well as intermediate
expansion layers in an expansion hierarchy.

Normally, the user wants to see the proof only at a specific level of granularity and
therefore he can chose the granularity by selecting the justification for each node in the
PDS . Fig. 3 shows an example of how the selection of a justification of a node determines
the level of granularity. It shows a node n with two outgoing justifications j1 and j2, which
are connected by a hierarchical edge h from j1 to j2 indicating that j1 is a more granular
justification than j2. The user can decide whether he wants to see the more detailed version
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Fig. 3. Representation of a PDS node with justifications at different levels of granularity.

Fig. 4. Possible views of proofs at different levels of granularity inside a PDS .

of the proof given by j1 (and its subtree t1) or the more abstract version given by j2 (and
its subtree t2). The two different possible selections are shaded. Selecting the justifications
for each node the user gets a view into the PDS-graph, called a PDS-view (see Fig. 4),
at the selected level of granularity.

Note that in contrast to the traditional LCF approach, it is not mandatory to immedi-
ately expand a high-level proof plan to a lower-level, because we explicitly represent the
high-level proof plans in the PDS and thus conceptually separate plan formation from
plan validation (by recursive expansion). Validation of proof plans can thus be postponed
and executed at any time later on. In case of an unsuccessful expansion attempt, �MEGA’s
PDS provides mechanisms which change the status of the affected proof nodes from jus-
tified, i.e., closed, to open and then consistently clean up all structures, which depend on
these nodes. Thus, failing expansion may in particular introduce new gaps into a previously
closed proof plan and hence proof planning has to start again in order to fill the gaps and
search for a new plan.

Because the PDS represents the dependencies among goals and subgoals as well as
between high-level inference rules and lower-level inference rules, we can traverse the
datastructure in many ways for different purposes like visualization, proof explanation,
natural language generation and dependency-directed pruning of the proof object.

In summary, coexistence of several granularity levels and the dynamical maintenance
of their relationship is a central and distinguishing design objective of �MEGA’s PDS .
The PDS makes the hierarchical structure of proof plans explicit and retains it for further
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applications such as proof expansion, proof explanation with P.rex or an analogical transfer
of plans.

Currently, however, we cannot change the representation inside of a proof node, which is
still something to be desired. For example, it would be nice to be able to change the logical
propositions in naive set theory into Venn diagrams such that a diagrammatic reasoning
system could be used. Support for representational shifts of this kind in combination with
different levels of granularity is future work.

The proof object generated by �MEGA for the theorem “
√

2 is irrational”, which has
a well known human proof of less than a dozen lines, is recorded in a technical report
[14], where the unexpanded and the expanded proof objects are presented in great de-
tail: The most abstract proof at the level of the proof plan has about twenty steps and the
fully expanded proof has about 750. The final proof in natural language generated by the
�MEGA-system is shown in Fig. 6. A general presentation of this interesting case study
is [88].

2.3. Proof planning

�MEGA’s main focus is on knowledge-based proof planning [25,26,74], where proofs
are not conceived in terms of low-level calculus rules, but at a less detailed granularity, i.e.,
a more abstract level, that highlights the main ideas and de-emphasizes minor logical or
mathematical manipulations on formulae.

Knowledge-based proof planning is a paradigm in automated theorem proving, which
swings its motivational pendulum back to the AI origins in that it employs and further
develops many AI principles and techniques such as hierarchical planning, knowledge rep-
resentation in frames and control rules, constraint solving, tactical theorem proving, and
meta-level reasoning. It differs from traditional search based techniques in automated the-
orem proving not least in its level of granularity: The proof of a theorem is planned at an
abstract-level where an outline of the proof is found first. This outline, that is, the abstract
proof plan, can be recursively expanded to construct a proof within a logical calculus pro-
vided the expansion of the proof plan does not fail. The plan operators, called methods,
represent mathematical techniques familiar to a working mathematician. While the knowl-
edge of a mathematical domain as represented by methods and control rules is specific
to the mathematical field, the representational techniques and reasoning procedures are
general-purpose. For example, one of our first case studies [74] used the limit theorems
proposed by Woody Bledsoe [23] as a challenge to automated reasoning systems. The
general-purpose planner makes use of the mathematical domain knowledge of ε–δ-proofs
and of the guidance provided by declaratively represented control rules, which correspond
to mathematical intuition about how to prove a theorem in a particular situation. These
rules are the basis for our meta-level reasoning and the goal-directed behavior.

Domain knowledge is encoded into methods, control rules, and strategies. Moreover,
methods and control rules can employ external systems (e.g., one method is to call one of
the computer algebra systems) and make use of the knowledge in these systems. �MEGA’s
multi-strategy proof planner MULTI [73,64] searches then for a plan using the acquired
methods and strategies guided by the control knowledge in the control rules.
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2.3.1. AI principles in proof planning
A planning problem is a formal description of an initial state, a goal, and some opera-

tors that can be used to transform the initial state via some intermediate states to a state that
satisfies the goal. Applied to a planning problem, a planner returns a sequence of actions,
that is, instantiated operators (i.e., methods), which reach a goal state from the initial state
when executed. Such a sequence of actions is called a solution plan.

Proof planning considers mathematical theorems as planning problems [25]. The initial
state of a proof planning problem consists of the proof assumptions of the theorem, whereas
the goal is the theorem itself. The operators in proof planning are the methods, traditionally
they are tactics augmented by pre- and postconditions.

In �MEGA, proof planning is the process that computes actions, that is, instantiations
of methods, and assembles them sequentially in order to derive a theorem from a set of
assumptions. The effects and the preconditions of an action in proof planning are formulae
in the higher-order language POST , where the effects are considered as logically inferable
from the preconditions using this method. A proof plan under construction is represented
in the proof plan data structure PDS , which consists initially of an open node containing
the conjecture to be proven, and closed, i.e., justified nodes for the proof assumptions.
The introduction of a method changes the PDS by adding new proof nodes and justifying
the effects of the method by applications of the method to its premises. The aim of the
proof planning process is to reach a closed PDS , that is, a PDS without open nodes.
The solution proof plan produced is then a record of the sequence of actions that lead to a
closed PDS .

By allowing for forward and backward methods, �MEGA’s proof planner MULTI com-
bines forward and backward state-space planning. Thus, a planning state in MULTI is a
pair of the current world state and the current goal state. The initial world state consists of
the given proof assumptions and is transferred by forward methods into a new world state.
The goal state consists of the initial open node and is transferred by backward methods
into a new goal state containing new open nodes. From this point of view the aim of proof
planning is to compute a sequence of actions that derives a current world state in which all
the goals are satisfied.

As opposed to precondition achievement planning (e.g., see [96]), effects of methods
in proof planning do not cancel each other. For instance, a method with effect ¬F intro-
duced for an open node L1 does not threaten the effect F introduced by another method
for an open node L2. Dependencies among open nodes result from shared variables for
witness terms and their constraints. Constraints can, for instance, be instantiations for the
variables but they can also be mathematical constraints such as x < c, which states that,
whatever the instantiation for x is, it has to be smaller than c. The constraints created during
the proof planning process are collected in the constraint store of the CoSIE system [76,
100], which is a domain-independent extension of existing propagation-based constraint
solvers. The extension turned out to be necessary, since proof planning has peculiar re-
quirements that are not met by off-the-shelf constraint solvers: CoSIE computes symbolic
constraint inferences while respecting the logical side-conditions of proof planning, for in-
stance, the Eigenvariable condition and the logical dependencies between constraints and
their context. The search procedure of CoSIE computes logically correct instantiations for
the meta-variables.
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A proof-planning method is applicable only if its constraints are consistent with the
constraints collected so far. Dependencies among goals with shared variables are difficult
to analyze and can cause various kinds of failures in a proof planning attempt (see [63] for
more details).

2.3.2. Methods, control rules, and strategies
Methods are traditionally perceived as tactics in tactical theorem proving [78] aug-

mented with preconditions and effects, called premises and conclusions, respectively.
A method represents a large inference of the conclusion from the premises based on the
body of the tactic. For instance, NotI-m is a (very low-level) method whose purpose is to
prove a goal Γ � ¬P by contradiction. If NotI-m is applied to a goal Γ � ¬P then it closes
this goal and introduces the new goal to prove falsity, ⊥, under the assumption P , that
is, Γ,P �⊥. Thereby, Γ � ¬P is the conclusion of the method, whereas Γ,P �⊥ is the
premise of the method. NotI-m is a backward method, which reduces a goal (the conclu-
sion) to new goals (the premises). Forward methods, in contrast, derive new conclusions
from given premises. For instance, =Subst-m performs equality substitutions, for exam-
ple, by deriving from the two premises Γ � P [a] and Γ � a = b the conclusion Γ � P [b],
where an occurrence of a is replaced by an occurrence of b. Note that NotI-m and =Subst-
m are simple examples of domain-independent, logic-related methods, which are needed in
addition to domain-specific, mathematically motivated methods as illustrated below in Sec-
tion 2.3.3. Knowledge-based proof planning expands on these ideas and allows for more
general mathematical methods to be encapsulated into the proof planning methods.

Control rules represent mathematical knowledge about how to proceed in the proof
planning process. They can influence the planner’s behavior at choice points (e.g., which
goal to tackle next or which method to apply next) by preferring members of the corre-
sponding list of alternatives (e.g., the list of possible goals or the list of possible methods).
This way promising search paths are preferred and the search space can be pruned.

Strategies employ a fixed set of methods and control rules and, thus, tackle a theorem
by some mathematical standard that happens to be typical for this theorem. The reasoning
as to which strategy to employ on a problem is an explicit choice point in MULTI. In par-
ticular, MULTI can backtrack from a chosen strategy and commence search with different
strategies.

Detailed discussions of �MEGA’s method and control rule language can be found in
[63,65]. A detailed introduction to proof planning with multiple strategies is given in [73,
64] and more recently in [69]. In the following we briefly sketch how proof planning with
generic and domain specific methods along with domain specific control strategies can be
applied to plan “irrationality of j

√
l ”-conjectures for arbitrary natural numbers j and l (see

also [88]).

2.3.3. Exploiting domain specific knowledge: proof planning j
√

l-problems
�MEGA can successfully proof plan and proof/disprove the irrationality of j

√
l for arbi-

trary natural numbers j and l. In order to find a general approach to tackle these problems,
we first showed the challenge problem “

√
2 is irrational” (see [97]) and then analyzed

proofs for statements such as
√

8,
√

(3 · 3) − 1, or 3
√

2. We found that some of the concepts
and inference steps we used for

√
2 are particular to this problem and do not generalize
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whereas others do. Thus, the analysis led to some generalized concepts, theorems, and
proof steps, which we encoded into methods and control rules, which together form one
planner strategy for this kind of problems. We shall now discuss the acquired methods and
control rules.

The essential idea of the proofs is as follows:

1. Use the MBASE-theorem RAT-CRITERION (it states that for each rational number x,
there are integers y and z, such that x · y = z, where y and z have no common divisor
besides 1) and construct an indirect proof.

2. In order to derive the contradiction show that the two witnesses (i.e., the existential
variables y and z) in RAT-CRITERION, which are supposed to have no common
divisor, actually do have a common divisor d .

3. In order to find a common divisor transform equations (for example,
√

2 · n = m →
2 · n2 = m2), derive new divisor statements (for example, from 2 · n2 = m2 derive that
m2 has divisor 2, or from the statement that m2 has divisor 2 derive that m has divisor
2), and derive from given divisor statements new representations of terms, which can
be used again for equational transformations (for example, from the statement that m

has divisor 2 derive that m = 2 · k for some k).
Note that we are particularly interested in prime divisors, since only for prime numbers
d is it true that if d is a divisor of mj then d is also a divisor of m. A corresponding
theorem is available in �MEGA’s knowledge base MBASE.

To realize the first idea (1), the planner MULTI has to decide for an indirect proof, apply
the theorem RAT-CRITERION, and derive l · nj = mj for integers m and n, which are
supposed to have no common divisor. These steps are canonical for arbitrary j

√
l problems.

Hence, we could implement them all into one method. However, to avoid the well known
problem of over-fitting methods, i.e., to make them special just for a particular theorem, we
decided to employ already existing methods from other domains: NotI-m (contradiction of
negated statements), MAssertion-m (apply a theorem or an axiom from the theory), ExistsE-
Sort-m (decompose existentially quantified formulae), AndE-m (decompose conjunctions).

The application of the methods ExistsE-Sort-m, AndE-m, and NotI-m do not need any
further control, but the application of MAssertion-m has to be guided by selecting the theo-
rem or axiom to be applied. This is achieved by a control rule apply-ratcriterion,
which determines that the theorem RAT-CRITERION should be used for MAssertion-m,
whenever there is a goal formula j

√
l.

The second idea (2) is realized with the method ContradictionCommonDivisor-m. When
MULTI tries to apply the method it searches first for an assumption stating that two terms
t1, t2 have no common divisor, and then it searches for two (derived) assumptions stating
that t1 and t2 both have a divisor d . This method is not guided by control rules, but MULTI

tries to apply it to some derived assumptions in each planning cycle.
The third idea (3) of the proof technique is encoded into several collaborating

methods: TransFormEquation-m, =Subst-m, PrimeFacsProduct-m, PrimeDivPower-m, and
CollectDivs-m. The method TransFormEquation-m contains knowledge about suitable
equational transformations for our problem domain. It is applied to an equation and derives
a new equation. For instance, TransFormEquation-m derives l · nj = mj from j

√
l · n = m,
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or it derives n2 = 2 · k2 from 2 · n2 = (2 · k)2. The method =Subst-m performs equality
substitutions.

PrimeFacsProduct-m and PrimeDivPower-m encapsulate the knowledge of how to derive
divisor statements. PrimeFacsProduct-m is applied to equations x = l · y (or l · y = x)
and derives a new assumption which is a conjunction of statements that x has particular
prime divisors. The method employs MAPLE to compute the prime divisors of l using
MAPLE’s function with(numtheory, factorset). It derives that x has to have all
prime divisors of l. For instance, from 2 · n2 = m2 PrimeFacsProduct-m derives that m2

has the prime divisor 2, from 6 · n2 = m2 it derives that m2 has the prime divisors 2 and 3.
PrimeDivPower-m is applied to an assumption that states that yj has prime divisor d and
derives that y has prime divisor d .

For a term t CollectDivs-m searches for assumptions stating that t has some prime divi-
sors. Then, it computes different possible representations of t based on the set of the prime
divisors {p1, . . . , pn}. That is, for each subset {p′

1, . . . , p
′
n′ } of {p1, . . . , pn} it adds a new

assumption t = p′
1 · · ·p′

n′ · c′ for some integer c′.
TransFormEquation-m, PrimeFacsProduct-m and PrimeDivPower-m are applied when-

ever possible and no guidance is required. The application of the method CollectDivs-m,
however, is guided by the control rule apply-collectdivs, which prefers CollectDivs-
m with respect to a term t as soon as there are assumptions stating that t has some prime
divisors. The application of =Subst-m is guided by the control rule apply-=subst,
which states that, after an application of CollectDivs-m, the method =Subst-m should be
applied in order to use the equations resulting from CollectDivs-m. When a method such as
=Subst-m, PrimeFacsProduct-m, or PrimeDivPower-m is applied to some premises, then
the same method is afterwards applicable again to the same premises, deriving the same
result. To avoid endless loops of such methods, we added the control rule reject-loop,
which blocks the repeated application of a forward method to the same premises.

2.4. �ANTS: agent-oriented theorem proving

�ANTS has originally been developed to support interactive theorem proving [18] and
later its was extended to a fully automated reasoning system [19,92]. The basic idea of
�ANTS is to encapsulate each inference rule into a pro-active agent, which checks au-
tomatically for its own applicability. For each proof situation the PDS is continuously
checked by these agents and thus composes a ranked list of potentially applicable inference
rules. In this process all calculus rules, tactics, external system calls and methods, collec-
tively called inference rules, are uniformly viewed with respect to three sets: premises,
conclusions, and additional parameters. The elements of these three sets are called argu-
ments of the inference rule and they usually depend on each other. An inference rule is
applicable if at least some of its arguments can be instantiated with respect to the given
proof context. The task of the �ANTS-system is now to determine the applicability of
inference rules by computing instantiations for their arguments.

The �ANTS-architecture consists of two layers. On the bottom layer, possible instan-
tiations of the arguments of individual inference rules are computed. In particular, each
inference rule is associated with a blackboard and some concurrent processes, one for
each argument of the inference rule. The role of every process is to compute possible in-
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stantiations for its designated argument of the inference rule, and to record these on the
blackboard. The computation is carried out with respect to the given proof context and
exploits the information already present on the blackboard, that is, argument instantiations
computed by other processes. On the upper layer, the information from the lower layer
is used for computing and heuristically ranking the inference rules that are applicable in
the current proof state. The heuristically most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of computation.

�ANTS uses resource reasoning to guide the search [22]. The integration of external
reasoning systems such as automated theorem provers, computer algebra systems, or model
generators into the architecture of �ANTS presupposes the declaration of some resource
limits these reasoning agents are allowed to spend (e.g., by specifying time-outs). The
external systems are encapsulated into inference rules, usually one for each system. For ex-
ample, an inference rule modeling the application of an ATP has its conclusion argument
set as “open goal”. A process can then place this open goal onto the blackboard, where
it is picked up by a process that applies the prover to it. Any computed proof or partial
proof from the external system is again written onto the blackboard from where it is subse-
quently inserted into the PDS when the inference rule is applied. While this setup enables
proof construction by a collaborative effort of diverse reasoning systems, the cooperation is
achieved via the central PDS . This means that all partial results have to be translated back
and forth between the syntaxes of the integrated systems and the representation language
of the PDS . In some cases efficient communication between inference systems is difficult
to achieve [15]. Therefore we have recently developed an alternative model of cooperating
systems in �ANTS which has been successfully applied to the combination of automated
higher-order and first-order theorem provers [20].

2.5. External systems

Proof problems require many different skills for their solution and it is desirable to have
access to several systems with complementary capabilities, to orchestrate their use, and
to integrate their results. �MEGA interfaces heterogeneous external systems such as com-
puter algebra systems (CASs), higher- and first-order automated theorem proving systems
(ATPs), constraint solvers (CSs), and model generation systems (MGs).

Their use is twofold: they may provide a solution to a subproblem, or they may give
hints for the control of the search for a proof. In the former case, the output of an incor-
porated reasoning system is translated and inserted as a subproof into the PDS . This is
beneficial for interfacing systems that operate at different levels of granularity, and also
for a human-oriented display and inspection of a partial proof. In particular we can now
check the soundness of each contribution by expanding the inserted subproof to a basic
logic-level proof in the PDS and then verify it by �MEGA’s proof checker.

Currently, the following external systems are integrated and used in �MEGA:

CASs provide symbolic computation, which can be used in two ways: first, to compute
hints to guide the proof search (e.g., witnesses for existential variables), and, sec-
ond, to perform some complex algebraic computation such as to normalize or
simplify terms. In the latter case the symbolic computation is directly translated
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into proof steps in �MEGA. CASs are integrated via the transformation and trans-
lation module SAPPER [91]. Currently, �MEGA uses the systems MAPLE [30]
and GAP [85].

ATPs are employed to solve subgoals. Currently �MEGA uses the first-order provers
BLIKSEM [38], EQP [60], OTTER [61], PROTEIN [10], SPASS [95], WALDMEIS-
TER [50], the higher-order systems TPS [2], and LEO [16,11], and we plan to
incorporate VAMPIRE [82]. The first-order ATPs are connected via TRAMP [62],
which is a proof transformation system that transforms resolution-style proofs into
assertion-level ND-proofs which can then be integrated into �MEGA’s PDS . TPS

already provides ND-proofs, which can be further processed and checked with lit-
tle transformational effort [12].

MGs provide either witnesses for free (existential) variables, or counter-models, which
show that some subgoal is not a theorem. Hence, they help to guide the proof
search. Currently, �MEGA uses the model generators SATCHMO [58] and SEM

[98].
CSs construct mathematical objects with theory-specific properties as witnesses for

free (existential) variables. Moreover, a constraint solver can help to reduce the
proof search by checking for inconsistencies of constraints. Currently, �MEGA

employs CoSIE [76,100], a constraint solver for inequalities and equations over
the field of real numbers.

2.6. Interface and system support

�MEGA’s graphical user interface L�UI [90] displays the current PDS in multiple
modalities: a graphical map of the proof tree, a linearized presentation of the proof nodes
with their formulae and justifications, a term browser, and a natural language presentation
of the proof via P.rex (see Figs. 5 and 6).

When inspecting a part of a proof, the user can switch between alternative levels of
granularity coexisting in the PDS , for example, by expanding an abstract justification of
a proof node into its associated, less abstract partial subproof, which causes appropriate
changes in the other presentation modes. Moreover, an interactive natural language expla-
nation of the proof is provided by the system P.rex [40,39,41], which is adaptive in the
following sense: it explains a proof step at the most abstract level (which the user is as-
sumed to know) and then reacts flexibly to questions and requests, possibly at a lower level
of granularity, for example, by detailing some ill-understood subproof.

Another system support is the guidance mechanism provided by the suggestion module
�ANTS (see Section 2.4), which searches pro-actively for possible actions that may be
helpful in finding a proof and presents them in a preference list.

2.7. Case studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh used proofs
by induction as their favorite case studies [25]. The �MEGA system has been used in
several other case studies, which illustrate in particular the interplay of the various compo-
nents, such as proof planning supported by heterogeneous external reasoning systems.
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Fig. 5. Multi-modal proof presentation in the graphical user interface L�UI .

A typical example for a class of problems that cannot be solved by traditional automated
theorem provers is the class of ε–δ-proofs [74,71]. This class was originally proposed by
Woody Bledsoe [23] as a challenge and it comprises theorems such as LIM+ and LIM*,
where LIM+ states that the limit of the sum of two functions equals the sum of their lim-
its and LIM* makes the corresponding statement for multiplication. The difficulty of this
domain arises from the need for arithmetic computation in order to find a suitable instanti-
ation of free (existential) variables (such as a δ depending on an ε). Crucial for the success
of �MEGA’s proof planning is the integration of suitable experts for these tasks: the arith-
metic computation is done by the computer algebra system MAPLE, and an appropriate
instantiation for δ is computed by the constraint solver CoSIE . We have been able to solve
all challenge problems suggested by Bledsoe and many more theorems in this class taken
from a standard textbook on real analysis [9].

Another class of problems we tackled with proof planning is concerned with residue
classes [67,66]. In this domain we showed theorems such as: “the residue class structure
(Z5, +̄) is associative”, “it has a unit element”, and similar properties, where Z5 is the
set of all congruence classes modulo 5 (i.e., {0̄5, 1̄5, 2̄5, 3̄5, 4̄5}) and +̄ is the addition on
residue classes. We have also investigated whether two given structures are isomorphic
or not and altogether we have proved more than 10,000 theorems of this kind (see [92]).
Although the problems in this domain are not too difficult and still within the success range
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Fig. 6. Natural language proof presentation by P.rex in L�UI .

of a traditional automated theorem prover, it was nevertheless an interesting case study for
proof planning, since multi-strategy proof planning generated substantially different proofs
based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique and we also
developed methods and strategies for this class [31]. Important theorems we have been able
to prove are the undecidability of the halting problem and Cantor’s theorem (cardinality of
the set of subsets), the non-countability of the reals in the interval [0,1] and of the set of
total functions, and similar theorems.

Finally, a good example for a standard proof technique is the excess-literal-number
technique. This is routinely used for completeness proofs of refinements of resolution,
where the theorem is usually first shown at the ground level using the excess-literal-number
technique and then ground completeness is lifted to the predicate calculus level. We have
done this for many refinements of resolution with �MEGA [45].
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However, �MEGA’s main aim is to become a proof assistant for the working math-
ematician. Hence, it should support interactive proof development at a human-oriented
level of granularity. The already mentioned theorem that

√
2 is irrational, and its well-

known proof dating back to the School of Pythagoras, provides an excellent challenge to
evaluate whether this ambitious goal has been reached. In [97] seventeen systems that have
solved the

√
2-problem show their results. The protocols of their respective sessions have

been compared on a multi-dimensional scale in order to assess the “naturalness” by which
real mathematical problems of this kind can be shown. This represents an important shift of
emphasis in the field of automated deduction away from the somehow artificial problems
of the past—as represented, for example, in the test set of the TPTP library [93]—back to
real mathematical challenges. We participated in this case study essentially with three dif-
ferent contributions. Our initial contribution was an interactive proof in �MEGA without
adding any special domain knowledge to the system. This demonstrates the use of �MEGA

as a tactical theorem prover (see [14]). The most important albeit not entirely new lesson to
be learned from this experiment is that the level of granularity common in most automated
and tactical theorem proving environments is far too low. While our proof representation in
this first study is already an abstraction (called the assertion level in [51]) from the calculus
level typical for most ATPs, it is nevertheless clear that as long as a system does not hide
all these excruciating details, no working mathematician will feel inclined to use such a
system. In fact, this is in our opinion one of the critical impediments for using first-order
ATPs and one, albeit not the only one, of the reasons why they are not used as widely as
computer algebra systems. This is the crucial issue of the �MEGA project and our main
motivation for departing from the classical paradigm of automated theorem proving about
fifteen years ago.

Our second contribution to the case study of the
√

2-problem is based on interactive
island planning [70], a technique that expects an outline of the proof, i.e., the user provides
main subgoals, called islands, together with their assumptions. In fact, we are able to proof
plan arbitrary j

√
l-problems as sketched in Section 2.3.3. Hence, the user can write down

his proof idea in a natural way with as many gaps as there are open at this first stage of
the proof. Closing the gaps is ideally fully automatic, in particular, by exploiting external
systems. However, for difficult theorems it is necessary more often than not that the user
provides additional information and applies the island approach recursively. In comparison
to our first tactic-based solution the island style supports a much more abstract and user-
friendly interaction level. The proofs are now at a level of granularity similar to proofs in
mathematical textbooks.

Our third contribution to the case study of the
√

2-problem are fully automatically
planned and expanded proofs of j

√
l-problems for arbitrary natural numbers j and l. The

details of this important case study, that shows best what can (and what cannot) be achieved
with current proof planning technology are presented in [88,89,14].

2.8. Discussion

2.8.1. Proof-planning as an alternative approach to automated theorem proving?
The most important question to ask here is: Can we find the essential and creative steps

automatically, for example, for the
√

2-problem discussed in Section 2.3.3? The answer is
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yes, as we have shown in [88]. However, while we can answer the question in the affirma-
tive, not every reader may be convinced, as our solution touches upon a subtle point, which
opens the Pandora Box of critical issues in the paradigm of proof planning [28]: It is always
easy to write some specific methods, which perform just the steps in the interactively found
proof and then calls the proof planner MULTI to fit the methods together into a proof plan
for the given problem. This, of course, shows nothing of substance: Just as we could write
down all the definitions and theorems required and sufficient for the problem in first-order
predicate logic and then hand them to a first-order prover,5 we would just hand-code the
final solution into appropriate methods.

Instead, the goal of the game is to find general methods for a whole class of theorems
within some theory that can solve not only this particular problem, but also all the other
theorems in that class. While our approach essentially follows the proof idea of the interac-
tively constructed proof for the

√
2-problem, it relies essentially on more general concepts.

However, this is certainly not the end of the story. In order to evaluate the appropriate-
ness of a proof planning approach we suggest the following four criteria:

(1) How general and how rich in mathematical content are the methods and control rules?
(2) How much search is involved in the proof planning process?
(3) What kind of proof plans, that is, what kind of proofs, can we find?
(4) If the proof planning procedure fails on some given conjecture, how likely is it that the

given conjecture is not a theorem?

These criteria should allow us to judge how general and how robust our solution is. The
art of proof planning is to acquire domain knowledge that, on the one hand, comprises
meaningful mathematical techniques and powerful heuristic guidance, and, on the other
hand, is general enough to tackle a broad class of problems. For instance, as one extreme,
we could have methods that encode �MEGA’s ND-calculus and we could run MULTI with-
out any control. This approach would certainly be very general, but MULTI would fail to
prove any interesting problems. As the other extreme, we could cut a known proof into
pieces, and code the pieces as methods. Guided by control rules that always pick the next
right piece of the proof, MULTI would assemble the methods again to the original proof
without performing any search. However, in that case if MULTI fails to find a proof then it
is not unlikely that the conjecture is nevertheless a theorem.

2.8.2. What lessons have we learned?
The problem domains on which proof planning has been applied so far are small but

nevertheless typical. Some interesting observations gained from this experience are the
following:

(1) The devil is in the detail, that is, it is always possible to hide the crucial creative step
(represented as a specific method or represented in the object language by an appro-
priate lemma) and to pretend a level of generality that has not actually been achieved.

5 This was done when OTTER tackled the
√

2-problem; see [97] for the original OTTER case study and [14] for
its replay with �MEGA.
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To evaluate a solution all tactics, methods, theorems, lemmata and definitions have to
be made explicit.

(2) The enormous distance between the well-known (top-level) proof of the Pythagorean
School, which consists of about a dozen proof steps in comparison to the final (non-
optimized) proof at �MEGA’s ND-calculus level with about 750 inference steps is
striking. This is, of course, not a new insight. While mathematics can in principle be
reduced to purely formal logic-level reasoning as demonstrated by Russell and White-
head as well as the Hilbert School, nobody would actually want to do so in practice
as the Bourbaki group of French mathematicians states explicitly: The first quarter
of the first volume in the several dozen volume set on the foundation of mathemat-
ics starts with elementary, logic-level reasoning and then proceeds with the crucial
sentence [24]: “No great experience is necessary to perceive that such a project [of
complete formalization] is absolutely unrealizable: the tiniest proof at the beginning
of the theory of sets would already require several hundreds of signs for its complete
formalization”.

(3) Finally and more to the general point of interest in mathematical support systems: Now
that we can prove theorems in the j

√
l-problem class, the skeptical reader may still ask:

So what? Will this ever lead to a general system for mathematical proof assistance?
We have shown that the class of ε–δ-proofs for limit theorems can indeed be solved
with a few dozen mathematically meaningful methods and control rules (see [74,72,
63]). Similarly, the domain of group theory with its class of residue theorems can be
formalized with even fewer methods (see [68,66,67]).6 An interesting observation is
also that these methods by and large correspond to the kind of mathematical knowledge
a freshman would have to learn to master this level of professionalism.

Do the above observations now hold for our j
√

l-problems? The unfortunate answer is
probably No! Imagine the subcommittee of the United Nations in charge of the mainte-
nance of the global mathematical knowledge base in a hundred years from now. Would
they accept the entry of our methods, tactics and control rules for the j

√
l-problems? Prob-

ably not!
Factual mathematical knowledge is preserved in books and monographs, but the art of

doing mathematics [81,49] is passed on by word of mouth from generation to generation.
The methods and control rules of the proof planner correspond to important mathematical
techniques and “ways to solve it” [81], and they make this implicit and informal mathe-
matical knowledge explicit and formal.

The theorems about j
√

l-problems are shown by contradiction, that is, the planner de-
rives a contradiction from the equation l · nj = mj , where n and m are integers with no
common divisor. However, these problems belong to the more general class to determine
whether two complex mathematical objects X and Y are equal. A general mathematical
principle for comparison of two complex objects is to look at their characteristic properties,
for example, their normal forms or some other uniform notation in the respective theory.

6 The generally important observation is not, of course, whether we need a dozen or a hundred methods, but
that we don’t need a few thousand or a million. A few dozen methods seem to be generally enough for a restricted
mathematical domain.
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And this is the crux of the matter: to find general mathematical principles and encode
them into appropriate methods, control rules and strategies such that an appropriately large
class of problems can be solved with these methods.

3. The future: what next?

The longterm goal of the �MEGA project is an integrated environment of tools support-
ing a wide range of typical mathematical activities. Examples of mathematical activities are
computing, proving, solving, modeling, verifying, structuring, searching, inventing, pub-
lishing, explaining, illustrating, etc. We anticipate that in the long run assistance systems
for mathematics will change mathematical practice and they will have a strong societal
impact, not least in the sense that a powerful infrastructure for mathematical research and
education will become commercially available. Computer supported mathematical reason-
ing tools and integrated assistance systems will be further specialized to have a strong
impact also in many other theoretical fields such as safety and security verification of com-
puter software and hardware, theoretical physics and chemistry and other related subjects.

The research questions we plan to investigate in the immediate future arise from the
following scenario of preparing a mathematical research article with formalized content in
a textbook style and in professional type-setting quality.

Mathematical research article preparation scenario. The author starts writing a new
mathematical document in a format suitable for publication by using mathematical con-
cepts from different mathematical domains. New mathematical concepts or lemmata in-
troduced in the paper should result in corresponding new formal objects. Furthermore,
when writing the document appropriate service tools can be used to compute intermedi-
ate results for an illustrating example, querying mathematical databases for mathematical
publications introducing similar concepts and send subproblems to be solved to special
reasoning or computation systems. Proofs of lemmata and theorems contained in the doc-
ument should be amenable to formal proof checking techniques such that the submitted
paper can be proof checked semi-automatically by the journal. A long-term goal may be
fully automated verification.

3.1. Formalization and proving at a higher level of granularity

Mathematical reasoning with the �MEGA system is at the comparatively high level of
the proof planning methods. However, as these methods have to be expanded eventually
to our base-level ND-calculus, the system still suffers from the effect and influence this
logical representation has. In contrast, the proofs developed by a mathematician, say for
a mathematical publication, and the proofs developed by a student in a mathematical tu-
toring system are typically developed at a less fine-grained argumentative level. This level
has been formally categorized as proofs at the assertion level [51]. While so far assertion
level proofs needed to be constructed from the underlying ND-calculus proof in �MEGA,
the recently developed CORE system [3,4] supports proof construction directly on the as-
sertion level and defines a communication infrastructure, i.e., a mediator, between the user
and the automatic reasoning procedures. Currently, we exchange �MEGA’s ND-calculus
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by the CORE calculus, which supports the presentation of the proof state via relevant
contextual information about possible proof continuations and also supports hierarchical
proof development. The proof theory of CORE is uniform for a variety of logics and ex-
ploits proof-theoretic annotations in formulas for an assertion-level contextual reasoning
style.

An unfortunate aspect of typical mathematical proofs is their under-specification,7 for
example, missing references to premise assertions, to rule and instantiation specifications
or simply the specific part of the formula the author is talking about. One particular
challenge here is to define an appropriate proof format which allows to represent human-
constructed proofs as they are and to develop means to resolve the under-specification
later by deductive methods. First steps in that direction and a description of the types of
under-specifications can be found in [5,13].

3.2. Mathematical knowledge representation

A mathematical proof assistance system relies upon different kinds of knowledge: First,
of course, the formalized mathematical domain as organized in structured theories of de-
finitions, lemmata, and theorems. Secondly, there is mathematical knowledge on how to
prove a theorem, which is encoded in tactics and methods, in �ANTS agents, in control
knowledge and in strategies. This type of knowledge can be general, theory specific or even
problem specific.

The integration of a mathematical proof assistant into the typical and everyday activities
of a mathematician requires, however, other types of knowledge as well. For example,
a tutoring system for maths students may rely upon a database with different samples of
proofs and proof plans linked by meta-data in order to advise the student. Another example
is the support for mathematical publications: The documents containing both formalized
and non-formalized parts need to be related to specific theories, lemmata, theorems, and
proofs. This raises the research challenge on how the usual structuring mechanisms for
mathematical theories (such as theory hierarchies or the import of theories via renaming
or general morphisms) can be extended to tactics and methods as well as to proofs, proof
plans and mathematical documents. Furthermore, changing any of these elements requires
maintenance support as any change in one part may have consequences in other parts. For
example, the validity of a proof needs to be checked again after changing parts of a theory,
which in turn may affect the validity of the mathematical documents. Thus, technology
supporting the management of change [7,8,6,52,77], originally developed for evolutionary
formal software engineering at the DFKI,8 will now be integrated into the �MEGA system
as well.

Hierarchically structured mathematical knowledge, i.e., an ontology of mathemati-
cal theories and assertions has initially been stored in �MEGAs hardwired mathematical

7 “Under-specification” is a technical term borrowed from research on the semantics of natural language.
Roughly it means that certain aspects in the semantic representation of a natural language utterance are left unin-
terpreted, such that their proper treatment can be deferred to later stages of processing in which more contextual
information is available.

8 http://www.dfki.de.

http://www.dfki.de
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knowledge base. This mathematical knowledge base was later (end of the 90s) out-sourced
and linked to the development of MBASE [43]. We now assume that a mathematical
knowledge base also maintains domain specific control rules, strategies, and linguistic
knowledge. While this is not directly a subject of research in the �MEGA project, rely-
ing here on other groups of the MKM community and especially the OMDOC format,9 we
shall nevertheless concentrate on one aspect, namely how to find the appropriate informa-
tion as outlined in the next paragraph.

3.2.1. Semantic mediators for mathematical knowledge bases
Knowledge acquisition and retrieval in the currently emerging large repositories of for-

malized mathematical knowledge should not be based purely on syntactic matching, but it
needs to be supported by semantic mediators.

To prove a mathematical theorem in a particular domain is initially blind. Indeed, in
order to prevent a search space explosion, only part of the relevant knowledge is made
available at the start. For instance, in the �MEGA system the proof planner MULTI selects
a subset of the available knowledge which consists, for each theorem, of a set of assertions
(axioms, definitions, lemmata), tactics and proof-planning methods. As this selection is
naturally incomplete, there is the need to incrementally incorporate additional knowledge
if needed.

We are working on appropriately limited higher-order reasoning agents for domain-
and context-specific retrieval of mathematical knowledge from a mathematical knowledge
base. For this we shall adapt a two stage approach as in [17], which combines syntactically
oriented pre-filtering with semantic analysis. The pre-filter employ efficiently processable
criteria based on meta-data and ontologies that identify sets of candidate theorems of a
mathematical knowledge base that are potentially applicable to a focused proof context.
The higher-order agents then act as post-filters to exactly determine the applicable theo-
rems of this set.

3.3. MathServ: a global web for mathematical services

The Internet provides a vast collection of data and computational resources. For exam-
ple, a travel booking system combines different information sources, such as the search
engines, price computation schemes, and the travel information in distributed very large
databases, in order to answer complex booking requests. The access to such specialized
travel information sources has to be planned, the obtained results combined, and, in ad-
dition, the consistency of time constraints has to be guaranteed. We want to transfer and
apply this methodology to mathematical problem solving and develop a system that plans
the combination of several mathematical information sources (such as mathematical data-
bases), computer algebra systems, and reasoning processes (such as theorem provers or
constraint solvers). Based on the well-developed MATHWEB-SB network of mathemati-
cal services, the existing client-server architecture will be extended by advanced problem
solving capabilities and semantic brokering of mathematical services (see [101]).

9 http://www.mathweb.org/omdoc/.

http://www.mathweb.org/omdoc/
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Fig. 7. Documents in TeXmacs: The user will be supported by different mathematical reasoning services that
“understand” the document content.

3.4. Support for mathematical activities

Proof construction is an important but only a small part of a much wider range of math-
ematical activities an assistance system for mathematics should support.

3.4.1. Certified mathematics texts
A mathematician or software engineer writes a paper usually in a LaTeX-like environ-

ment. The definitions, lemmata, theorems and especially their proofs give rise to extensions
of the original theory he started with. If the proofs of the new theorems and their consis-
tency with previous assertions are computer checked, we have mathematical documents
in a publishable style which in addition are formally validated, hence obtaining certified
mathematical documents. A first step in that direction is currently under development by
linking the WYSIWYG mathematical editor TEXMACS [94] with the �MEGA system (see
Fig. 7).

The TEXMACS-system provides LaTeX-like editing and macro-definition features, and
we are defining macros for theory-specific knowledge such as types, constants, axioms, and
lemmata. This allows us to translate new textual definitions and lemmata into the formal
representation, as well as to translate (partial) textbook proofs into (partial) proof plans.

3.4.2. Mathematical advice in tutoring systems
We are also involved in the DFKI project ActiveMath [75], which develops an e-learning

tool for tutoring maths students, in particular in advising a student how to prove a theorem.
This scenario is currently also under investigation in the DIALOG10 project [13,21] and,
aside from all linguistic analysis problems, gives rise to the problem to bridge the gap

10 The DIALOG project is a collaboration between the Computer Science and Computational Linguistics de-
partments of Saarland University as part of the Collaborative Research Center on Resource-Adaptive Cognitive
Processes, SFB 378 (http://www.coli.uni-saarland.de/projects/sfb378/).

http://www.coli.uni-saarland.de/projects/sfb378/
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between the human style of proofs and machine-oriented proof representations. Human-
authored proofs are often imprecise in several respects, namely (i) the used inference rule
is not mentioned, (ii) some of the premises needed for a step in the derivation are not
mentioned, and (iii) some steps of the derivation are completely omitted.

Another interesting and novel application for theorem proving systems in the DIALOG

project is proof step evaluation (see [21]): Each proof step uttered by a student within a
tutorial context has to be analyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal inference system and logically
and tutorially verified?

Granularity: Is the ‘argumentative complexity’ or ‘size’ of the proof step logically and
tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful for achieving the final goal?
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