Jörg Siekmann

Selected Publications

 

C. P. Wirth, J.Siekmann, V.Peckhaus, M. Gabbay, D. Gabbay: “David Hilbert, Paul Bernays: Grundlagen  Mathematik I”, Foundations of Mathematics I, bilingual 8-volume edition, 2016;  subsequent volumes to appear. grundlagen-mathe-1
Szabo, Peter, Jörg Siekmann, and Michael Hoche. “What Is Essential Unification?.”  In Martin Davis on Computability, Computational Logic, and Mathematical Foundations (pp. 285-314). Springer International Publishing. 2016. martin-davis
J. Siekmann: “Computational Logic” erschienen in: D.Gabbay, J.Siekmann,J.Woods (eds) “Handbook on the History of Logic”, vol 9, North Holland, Elsevier, 2014. computational-logic
S. Autexier, Chr. Benzmüller, D. Dietrich, J. Siekmann: OMEGA in: „Resource Adaptive Cognitive Processes“ , Springer Cognitive Technologies, Springer Verlag, 2010 978-3-540-89407-0_crocker_CoverRawData.indd
Melis, Erica, Andreas Meier, and Jörg Siekmann. “Proof planning with multiple strategies.” In Artificial Intelligence172(6-7), p. 656-684, 2008.
Melis, Erica, and Jörg Siekmann. “e-Learning Logic and Mathematics: What We Have and What We Still Need.”  In Essays in Honor of Dov Gabbay, 2005.
Melis, Erica, and Jörg Siekmann. “Activemath: An intelligent tutoring system for mathematics.”  In ICAISC (p. 91-101). 2004.
Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., & Pollet, M.. “Proof Development with Ωmega: The Irrationality of\sqrt 2.” In Thirty five years of automating mathematics , p. 271-314, Springer Netherlands, 2003.
Siekmann, Jörg, and Graham Wrightson. “An open research problem: Strong completeness of R. Kowalski’s connection graph proof procedure.” In Computational Logic: Logic Programming and Beyond, p. 231-252, 2002. strong-completeness-of-a-kowalskis-connection-graph-proof-procedure
Hutter, D., Langenstein, B., Rock, G., Siekmann, J. H., Stephan, W., & Vogt, R.. “Formal software development in the Verification Support Environment (VSE).” In Journal of Experimental & Theoretical Artificial Intelligence12(4), p. 383-406, 2000.
Melis, Erica, and Jörg Siekmann. “Knowledge-based proof planning.” In Artificial Intelligence115 (1), p. 65-105, 1999
Beierle, C., Hedtstueck, U., Pletat, U., Schmitt, P. H., & Siekmann, J.: “An order-sorted logic for knowledge representation systems.” In Artificial intelligence55 (2-3), p. 149-191, 1992. ai
Baader, F., Bürckert, H.-J., Hollunder, B., Nutt, W. and Siekmann, J.:  “Concept Logics” In J.W. Lloyd (Ed.), Computational Logic, p. 177-201, Symposium Proceedings, Brussels,  Springer-Verlag, 1990. computational-logic-2
Siekmann, Jörg H. “Unification theory.”  In Journal of Symbolic computation7 (3-4), p. 207-274, 1989. journal-symbolic-computation
Siekmann, J., and Peter Szabó. “The undecidability of the DA-unification problem.” The Journal of Symbolic Logic54 (2), p. 402-414, 1989. journal-of-symbolic-logic
Herold, Alexander, and Jörg H. Siekmann. “Unification in abelian semigroups.” Journal of Automated Reasoning3 (3), p. 247-283, 1987. journal-of-automated-reasoning
Book, Ronald V., and Joerg H. Siekmann. “On unification: Equational theories are not bounded.” Journal of Symbolic Computation, 2 (4), p. 317-324, 1983.
Siekmann, Jörg, and Graham Wrightson. “Automation of Reasoning: Classical Papers on Computational Logic”, Vol 1 and 2, 1983.
Siekmann, Jörg, and P. Szabó. “A noetherian and confluent rewrite system for idempotent semigroups.”  Semigroup Forum (Vol. 25, No. 1, pp. 83-110). Springer New York, 1982. semigroup-forum