Jörg Siekmann

Selected Publications

 

C. P. Wirth, J. Siekmann, V. Peckhaus, M. Gabbay, D. Gabbay: “David Hilbert, Paul Bernays: Grundlagen  Mathematik I”, Foundations of Mathematics I, bilingual 8-volume edition, 2016;  subsequent volumes to appear. grundlagen-mathe-1 BibTex
P. Szabo, J. Siekmann, and M. Hoche: “What Is Essential Unification?.”  In: Martin Davis on Computability, Computational Logic, and Mathematical Foundations, pp. 285-314. Springer International Publishing. 2016. martin-davis BibTex
J. Siekmann: “Computational Logic” erschienen in: D.Gabbay, J.Siekmann,J.Woods (eds) “Handbook on the History of Logic”, vol. 9, North Holland, Elsevier, 2014. computational-logic BibTex
S. Autexier, C. Benzmüller, D. Dietrich, J. Siekmann: “OMEGA” In: „Resource Adaptive Cognitive Processes“ , Springer Cognitive Technologies, Springer Verlag, 2010 978-3-540-89407-0_crocker_CoverRawData.indd BibTex
E. Melis, A. Meier, and J. Siekmann: “Proof planning with multiple strategies.” In: Artificial Intelligence, vol. 172 no. 6-7, p. 656-684. 2008. BibTex
E. Melis, and J. Siekmann: “e-Learning Logic and Mathematics: What We Have and What We Still Need.”  In: Essays in Honor of Dov Gabbay. 2005. BibTex
E. Melis, and J. Siekmann: “Activemath: An intelligent tutoring system for mathematics.”  In: ICAISC, pp. 91-101. 2004. BibTex
J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, and M. Pollet: “Proof Development with Ωmega: The Irrationality of\sqrt 2.” In: Thirty five years of automating mathematics, pp. 271-314. Springer Netherlands. 2003. BibTex
J. Siekmann, and Graham Wrightson: “An open research problem: Strong completeness of R. Kowalski’s connection graph proof procedure.” In: Computational Logic: Logic Programming and Beyond, pp. 231-252. Springer, Berlin, Heidelberg. 2002. strong-completeness-of-a-kowalskis-connection-graph-proof-procedure BibTex
D. Hutter, B. Langenstein, G. Rock, J. Siekmann, W. Stephan, and R. Vogt: “Formal software development in the Verification Support Environment (VSE).” In: Journal of Experimental & Theoretical Artificial Intelligence, vol. 12 no. 4, pp. 383-406. 2000. BibTex
E. Melis, and J. Siekmann: “Knowledge-based proof planning.” In: Artificial Intelligence, vol. 115 no. 1, pp. 65-105. Elsevier. 1999. BibTex
Beierle, C., Hedtstueck, U., Pletat, U., Schmitt, P. H., & Siekmann, J.: “An order-sorted logic for knowledge representation systems.” In Artificial intelligence55(2-3), 149-191. 1992. ai BibTex
Baader, F., Bürckert, H.-J., Hollunder, B., Nutt, W. and Siekmann, J.:  “Concept Logics” In J.W. Lloyd (Ed.), Computational Logic, 177-201, Symposium Proceedings, Brussels,  Springer-Verlag, 1990. computational-logic-2 BibTex
Siekmann, Jörg H. “Unification theory.”  In Journal of Symbolic computation7(3-4), 207-274. 1989. journal-symbolic-computation BibTex
Siekmann, J., and Peter Szabó. “The undecidability of the DA-unification problem.” In The Journal of Symbolic Logic54(2), 402-414. 1989. journal-of-symbolic-logic BibTex
Herold, Alexander, and Jörg H. Siekmann. “Unification in abelian semigroups.” In Journal of Automated Reasoning3(3), 247-283. 1987. journal-of-automated-reasoning BibTex
Book, Ronald V., and Joerg H. Siekmann. “On unification: Equational theories are not bounded.” In Journal of Symbolic Computation, 2(4), 317-324. 1983. BibTex
Siekmann, Jörg, and Graham Wrightson. “Automation of Reasoning: Classical Papers on Computational Logic, volume 1 and 2.”. 1983. BibTex
Siekmann, Jörg, and P. Szabó. “A noetherian and confluent rewrite system for idempotent semigroups.”  In Semigroup Forum (Vol. 25, No. 1, pp. 83-110). Springer New York, 1982. semigroup-forum BibTex